Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motokazu Uchigashima is active.

Publication


Featured researches published by Motokazu Uchigashima.


Physiological Reviews | 2009

Endocannabinoid-Mediated Control of Synaptic Transmission

Masanobu Kano; Takako Ohno-Shosaku; Yuki Hashimotodani; Motokazu Uchigashima; Masahiko Watanabe

The discovery of cannabinoid receptors and subsequent identification of their endogenous ligands (endocannabinoids) in early 1990s have greatly accelerated research on cannabinoid actions in the brain. Then, the discovery in 2001 that endocannabinoids mediate retrograde synaptic signaling has opened up a new era for cannabinoid research and also established a new concept how diffusible messengers modulate synaptic efficacy and neural activity. The last 7 years have witnessed remarkable advances in our understanding of the endocannabinoid system. It is now well accepted that endocannabinoids are released from postsynaptic neurons, activate presynaptic cannabinoid CB(1) receptors, and cause transient and long-lasting reduction of neurotransmitter release. In this review, we aim to integrate our current understanding of functions of the endocannabinoid system, especially focusing on the control of synaptic transmission in the brain. We summarize recent electrophysiological studies carried out on synapses of various brain regions and discuss how synaptic transmission is regulated by endocannabinoid signaling. Then we refer to recent anatomical studies on subcellular distribution of the molecules involved in endocannabinoid signaling and discuss how these signaling molecules are arranged around synapses. In addition, we make a brief overview of studies on cannabinoid receptors and their intracellular signaling, biochemical studies on endocannabinoid metabolism, and behavioral studies on the roles of the endocannabinoid system in various aspects of neural functions.


Neuron | 2010

The Endocannabinoid 2-Arachidonoylglycerol Produced by Diacylglycerol Lipase α Mediates Retrograde Suppression of Synaptic Transmission

Asami Tanimura; Maya Yamazaki; Yuki Hashimotodani; Motokazu Uchigashima; Shinya Kawata; Manabu Abe; Yoshihiro Kita; Kouichi Hashimoto; Takao Shimizu; Masahiko Watanabe; Kenji Sakimura; Masanobu Kano

Endocannabinoids are released from postsynaptic neurons and cause retrograde suppression of synaptic transmission. Anandamide and 2-arachidonoylglycerol (2-AG) are regarded as two major endocannabinoids. To determine to what extent 2-AG contributes to retrograde signaling, we generated and analyzed mutant mice lacking either of the two 2-AG synthesizing enzymes diacylglycerol lipase alpha (DGLalpha) and beta (DGLbeta). We found that endocannabinoid-mediated retrograde synaptic suppression was totally absent in the cerebellum, hippocampus, and striatum of DGLalpha knockout mice, whereas the retrograde suppression was intact in DGLbeta knockout brains. The basal 2-AG content was markedly reduced and stimulus-induced elevation of 2-AG was absent in DGLalpha knockout brains, whereas the 2-AG content was normal in DGLbeta knockout brains. Morphology of the brain and expression of molecules required for 2-AG production other than DGLs were normal in the two knockout mice. We conclude that 2-AG produced by DGLalpha, but not by DGLbeta, mediates retrograde suppression at central synapses.


The Journal of Neuroscience | 2007

Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum.

Motokazu Uchigashima; Madoka Narushima; Masahiro Fukaya; István Katona; Masanobu Kano; Masahiko Watanabe

Endogenous cannabinoids (endocannabinoids) mediate retrograde signals for short- and long-term suppression of transmitter release at synapses of striatal medium spiny (MS) neurons. An endocannabinoid, 2-arachidonoyl-glycerol (2-AG), is synthesized from diacylglycerol (DAG) after membrane depolarization and Gq-coupled receptor activation. To understand 2-AG-mediated retrograde signaling in the striatum, we determined precise subcellular distributions of the synthetic enzyme of 2-AG, DAG lipase-α (DAGLα), and its upstream metabotropic glutamate receptor 5 (mGluR5) and muscarinic acetylcholine receptor 1 (M1). DAGLα, mGluR5, and M1 were all richly distributed on the somatodendritic surface of MS neurons, but their subcellular distributions were different. Although mGluR5 and DAGLα levels were highest in spines and accumulated in the perisynaptic region, M1 level was lowest in spines and was rather excluded from the mGluR5-rich perisynaptic region. These subcellular arrangements suggest that mGluR5 and M1 might differentially affect endocannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) in MS neurons. Indeed, mGluR5 activation enhanced both DSI and DSE, whereas M1 activation enhanced DSI only. Importantly, DSI, DSE, and receptor-driven endocannabinoid-mediated suppression were all abolished by the DAG lipase inhibitor tetrahydrolipstatin, indicating 2-AG as the major endocannabinoid mediating retrograde suppression at excitatory and inhibitory synapses of MS neurons. Accordingly, CB1 cannabinoid receptor, the main target of 2-AG, was present at high levels on GABAergic axon terminals of MS neurons and parvalbumin-positive interneurons and at low levels on excitatory corticostriatal afferents. Thus, endocannabinoid signaling molecules are arranged to modulate the excitability of the MS neuron effectively depending on cortical activity and cholinergic tone as measured by mGluR5 and M1 receptors, respectively.


The Journal of Neuroscience | 2006

Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor.

Takayuki Yoshida; Masahiro Fukaya; Motokazu Uchigashima; Eriko Miura; Haruyuki Kamiya; Masanobu Kano; Masahiko Watanabe

2-Arachidonoyl-glycerol (2-AG) is an endocannabinoid that is released from postsynaptic neurons, acts retrogradely on presynaptic cannabinoid receptor CB1, and induces short- and long-term suppression of transmitter release. To understand the mechanisms of the 2-AG-mediated retrograde modulation, we investigated subcellular localization of a major 2-AG biosynthetic enzyme, diacylglycerol lipase-α (DAGLα), by using immunofluorescence and immunoelectron microscopy in the mouse brain. In the cerebellum, DAGLα was predominantly expressed in Purkinje cells. DAGLα was detected on the dendritic surface and occasionally on the somatic surface, with a distal-to-proximal gradient from spiny branchlets toward somata. DAGLα was highly concentrated at the base of spine neck and also accumulated with much lower density on somatodendritic membrane around the spine neck. However, DAGLα was excluded from the main body of spine neck and head. In hippocampal pyramidal cells, DAGLα was also accumulated in spines. In contrast to the distribution in Purkinje cells, DAGLα was distributed in the spine head, neck, or both, whereas somatodendritic membrane was labeled very weakly. These results indicate that DAGLα is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons. The preferential spine targeting should enable efficient 2-AG production on excitatory synaptic activity and its swift retrograde modulation onto nearby presynaptic terminals expressing CB1. Furthermore, different fine localization within and around spines suggests that the distance between postsynaptic 2-AG production site and presynaptic CB1 is differentially controlled depending on neuron types.


The Journal of Neuroscience | 2007

Tonic Enhancement of Endocannabinoid-Mediated Retrograde Suppression of Inhibition by Cholinergic Interneuron Activity in the Striatum

Madoka Narushima; Motokazu Uchigashima; Masahiro Fukaya; Minoru Matsui; Toshiya Manabe; Kouichi Hashimoto; Masahiko Watanabe; Masanobu Kano

Tonically active cholinergic interneurons in the striatum modulate activities of striatal outputs from medium spiny (MS) neurons and significantly influence overall functions of the basal ganglia. Cellular mechanisms of this modulation are not fully understood. Here we show that ambient acetylcholine (ACh) derived from tonically active cholinergic interneurons constitutively upregulates depolarization-induced release of endocannabinoids from MS neurons. The released endocannabinoids cause transient suppression of inhibitory synaptic inputs to MS neurons through acting retrogradely onto presynaptic CB1 cannabinoid receptors. The effects were mediated by postsynaptic M1 subtype of muscarinic ACh receptors, because the action of a muscarinic agonist to release endocannabinoids and the enhancement of depolarization-induced endocannabinoid release by ambient ACh were both deficient in M1 knock-out mice and were blocked by postsynaptic infusion of guanosine-5′-O-(2-thiodiphosphate). Suppression of spontaneous firings of cholinergic interneurons by inhibiting Ih current reduced the depolarization-induced release of endocannabinoids. Conversely, elevation of ambient ACh concentration by inhibiting choline esterase significantly enhanced the endocannabinoid release. Paired recording from a cholinergic interneuron and an MS neuron revealed that the activity of single cholinergic neuron could influence endocannabinoid-mediated signaling in neighboring MS neurons. These results clearly indicate that striatal endocannabinoid-mediated modulation is under the control of cholinergic interneuron activity. By immunofluorescent and immunoelectron microscopic examinations, we demonstrated that M1 receptor was densely distributed in perikarya and dendrites of dopamine D1 or D2 receptor-positive MS neurons. Thus, we have disclosed a novel mechanism by which the muscarinic system regulates striatal output and may contribute to motor control.


The Journal of Neuroscience | 2012

Three Types of Neurochemical Projection from the Bed Nucleus of the Stria Terminalis to the Ventral Tegmental Area in Adult Mice

Takehiro Kudo; Motokazu Uchigashima; Taisuke Miyazaki; Kohtarou Konno; Miwako Yamasaki; Yuchio Yanagawa; Masabumi Minami; Masahiko Watanabe

Dopaminergic (DAergic) neurons in the ventral tegmental area (VTA) play crucial roles in motivational control of behaviors, and their activity is regulated directly or indirectly via GABAergic neurons by extrinsic afferents from various sources, including the bed nucleus of the stria terminalis (BST). Here, the neurochemical composition of VTA-projecting BST neurons and their outputs to the VTA were studied in adult mouse brains. By combining retrograde tracing with fluorescence in situ hybridization for 67 kDa glutamate decarboxylase (GAD67) and vesicular glutamate transporters (VGluTs), VTA-targeting BST neurons were classified into GAD67-positive (GAD67+)/VGluT3-negative (VGluT3−), GAD67+/VGluT3+, and VGluT2+ neurons, of which GAD67+/VGluT3− neurons constituted the majority (∼90%) of VTA-projecting BST neurons. GABAergic efferents from the BST formed symmetrical synapses on VTA neurons, which were mostly GABAergic neurons, and expressed GABAA receptor α1 subunit on their synaptic and extrasynaptic membranes. In the VTA, VGluT3 was detected in terminals expressing vesicular inhibitory amino acid transporter (VIAAT), plasmalemmal serotonin transporter, or neither. Of these, VIAAT+/VGluT3+ terminals, which should include those from GAD67+/VGluT3+ BST neurons, formed symmetrical synapses. When single axons from VGluT3+ BST neurons were examined, almost all terminals were labeled for VIAAT, whereas VGluT3 was often absent from terminals with high VIAAT loads. VGluT2+ terminals in the VTA exclusively formed asymmetrical synapses, which expressed AMPA receptors on postsynaptic membrane. Therefore, the major mode of the BST–VTA projection is GABAergic, and its activation is predicted to disinhibit VTA DAergic neurons. VGluT2+ and VGluT3+ BST neurons further supply additional projections, which may principally convey excitatory or inhibitory inputs, respectively, to the VTA.


The Scientific World Journal | 2009

Key Modulatory Role of Presynaptic Adenosine A2A Receptors in Cortical Neurotransmission to the Striatal Direct Pathway

César Quiroz; Rafael Luján; Motokazu Uchigashima; Ana Patrícia Simões; Talia N. Lerner; Janusz Borycz; Anil Kachroo; Paula M. Canas; Marco Orru; Michael A. Schwarzschild; Diane L. Rosin; Anatol C. Kreitzer; Rodrigo A. Cunha; Masahiko Watanabe; Sergi Ferré

Basal ganglia processing results from a balanced activation of direct and indirect striatal efferent pathways, which are controlled by dopamine D1 and D2 receptors, respectively. Adenosine A2A receptors are considered novel antiparkinsonian targets, based on their selective postsynaptic localization in the indirect pathway, where they modulate D2 receptor function. The present study provides evidence for the existence of an additional, functionally significant, segregation of A2A receptors at the presynaptic level. Using integrated anatomical, electrophysiological, and biochemical approaches, we demonstrate that presynaptic A2A receptors are preferentially localized in cortical glutamatergic terminals that contact striatal neurons of the direct pathway, where they exert a selective modulation of corticostriatal neurotransmission. Presynaptic striatal A2A receptors could provide a new target for the treatment of neuropsychiatric disorders.


European Journal of Neuroscience | 2006

Depolarization‐induced suppression of inhibition mediated by endocannabinoids at synapses from fast‐spiking interneurons to medium spiny neurons in the striatum

Madoka Narushima; Motokazu Uchigashima; Kouichi Hashimoto; Masahiko Watanabe; Masanobu Kano

Endogenous cannabinoids (endocannabinoids) act as retrograde inhibitory messengers in various regions of the brain. We have recently reported that endocannabinoids mediate short‐term retrograde suppression of excitatory synaptic transmission from the neocortex to medium spiny (MS) neurons, the major projection neurons from the striatum. However, it remains unclear whether endocannabinoids modulate inhibitory transmission in the striatum. Here we show that depolarization of MS neurons induces transient suppression of inhibition that is mediated by retrograde endocannabinoid signalling. By paired recording from a fast‐spiking (FS) interneuron and an MS neuron, we demonstrated that FS–MS inhibitory synapses undergo endocannabinoid‐mediated retrograde suppression. We verified that GABAergic inhibitory terminals immunopositive for parvalbumin (PV), a marker for FS interneurons, expressed CB1 receptors. These PV–CB1 double‐positive terminals surrounded dopamine D1 receptor‐positive and D2 receptor‐positive MS neurons; these constitute direct and indirect pathways, respectively. These results suggest that endocannabinoid‐mediated retrograde suppression of inhibition influences information flow along both direct and indirect pathways, depending on the activity of MS neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal neurons in basal amygdaloid nucleus

Takayuki Yoshida; Motokazu Uchigashima; Miwako Yamasaki; István Katona; Maya Yamazaki; Kenji Sakimura; Masanobu Kano; Mitsuhiro Yoshioka; Masahiko Watanabe

2-Arachidonoylglycerol (2-AG) is the endocannabinoid that mediates retrograde suppression of synaptic transmission in the brain. 2-AG is synthesized in activated postsynaptic neurons by sn-1-specific diacylglycerol lipase (DGL), binds to presynaptic cannabinoid CB1 receptors, suppresses neurotransmitter release, and is degraded mainly by monoacylglycerol lipase (MGL). In the basolateral amygdala complex, it has been demonstrated that CB1 is particularly enriched in axon terminals of cholecystokinin (CCK)-positive GABAergic interneurons, induces short- and long-term depression at inhibitory synapses, and is involved in extinction of fear memory. Here, we clarified a unique molecular convergence of DGLα, CB1, and MGL at specific inhibitory synapses in the basal nucleus (BA), but not lateral nucleus, of the basolateral amygdala. The synapses, termed invaginating synapses, consisted of conventional symmetrical contact and unique perisynaptic invagination of nerve terminals into perikarya. At invaginating synapses, DGLα was preferentially recruited to concave somatic membrane of postsynaptic pyramidal neurons, whereas invaginating presynaptic terminals highly expressed CB1, MGL, and CCK. No such molecular convergence was seen for flat perisomatic synapses made by parvalbumin-positive interneurons. On the other hand, DGLα and CB1 were expressed weakly at axospinous excitatory synapses. Consistent with these morphological data, thresholds for DGLα-mediated depolarization-induced retrograde suppression were much lower for inhibitory synapses than for excitatory synapses in BA pyramidal neurons. Moreover, depolarization-induced suppression was readily saturated for inhibition, but never for excitation. These findings suggest that perisomatic inhibition by invaginating synapses is a key target of 2-AG-mediated control of the excitability of BA pyramidal neurons.


The Journal of Neuroscience | 2011

Molecular and Morphological Configuration for 2-Arachidonoylglycerol-Mediated Retrograde Signaling at Mossy Cell–Granule Cell Synapses in the Dentate Gyrus

Motokazu Uchigashima; Maya Yamazaki; Miwako Yamasaki; Asami Tanimura; Kenji Sakimura; Masanobu Kano; Masahiko Watanabe

2-Arachidonoylglycerol (2-AG) is the endocannabinoid that mediates retrograde suppression of neurotransmission in the brain. In the present study, we investigated the 2-AG signaling system at mossy cell (MC)–granule cell (GC) synapses in the mouse dentate gyrus, an excitatory recurrent circuit where endocannabinoids are thought to suppress epileptogenesis. First, we showed by electrophysiology that 2-AG produced by diacylglycerol lipase α (DGLα) mediated both depolarization-induced suppression of excitation and its enhancement by group I metabotropic glutamate receptor activation at MC–GC synapses, as they were abolished in DGLα-knock-out mice. Immunohistochemistry revealed that DGLα was enriched in the neck portion of GC spines forming synapses with MC terminals, whereas cannabinoid CB1 receptors accumulated in the terminal portion of MC axons. On the other hand, the major 2-AG-degrading enzyme, monoacylglycerol lipase (MGL), was absent at MC–GC synapses but was expressed in astrocytes and some inhibitory terminals. Serial electron microscopy clarified that a given GC spine was innervated by a single MC terminal and also contacted nonsynaptically by other MC terminals making synapses with other GC spines in the neighborhood. MGL-expressing elements, however, poorly covered GC spines, amounting to 17% of the total surface of GC spines by astrocytes and 4% by inhibitory terminals. Our findings provide a basis for 2-AG-mediated retrograde suppression of MC–GC synaptic transmission and also suggest that 2-AG released from activated GC spines is readily accessible to nearby MC–GC synapses by escaping from enzymatic degradation. This molecular–anatomical configuration will contribute to adjust network activity in the dentate gyrus after enhanced excitation.

Collaboration


Dive into the Motokazu Uchigashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuto Kobayashi

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryoji Fukabori

Fukushima Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge