Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoki Murata is active.

Publication


Featured researches published by Motoki Murata.


Journal of Biological Chemistry | 2014

67-kDa Laminin Receptor-dependent Protein Phosphatase 2A (PP2A) Activation Elicits Melanoma-specific Antitumor Activity Overcoming Drug Resistance

Shuntaro Tsukamoto; Yuhui Huang; Daisuke Umeda; Shuhei Yamada; Shuya Yamashita; Motofumi Kumazoe; Yoonhee Kim; Motoki Murata; Koji Yamada; Hirofumi Tachibana

Background: Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) inhibits melanoma proliferation in a cancer-specific manner through 67-kDa laminin receptor (67LR). Results: Identified protein phosphatase 2A (PP2A) as a critical downstream factor of 67LR. Conclusion: Targeting 67LR/PP2A elicits activation of tumor suppressor Merlin and inhibition of mTOR pathway overcoming drug resistance. Significance: 67LR/PP2A may be a promising therapeutic target for melanomas. The Ras/Raf/MEK/ERK pathway has been identified as a major, druggable regulator of melanoma. Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, resulting in constitutive melanoma hyperproliferation. A selective BRAF inhibitor showed remarkable clinical activity in patients with mutated BRAF. Unfortunately, most patients acquire resistance to the BRAF inhibitor, highlighting the urgent need for new melanoma treatment strategies. Green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) inhibits cell proliferation independently of BRAF inhibitor sensitivity, suggesting that increased understanding of the anti-melanoma activity of EGCG may provide a novel therapeutic target. Here, by performing functional genetic screening, we identified protein phosphatase 2A (PP2A) as a critical factor in the suppression of melanoma cell proliferation. We demonstrated that tumor-overexpressed 67-kDa laminin receptor (67LR) activates PP2A through adenylate cyclase/cAMP pathway eliciting inhibitions of oncoproteins and activation of tumor suppressor Merlin. Activating 67LR/PP2A pathway leading to melanoma-specific mTOR inhibition shows strong synergy with the BRAF inhibitor PLX4720 in the drug-resistant melanoma. Moreover, SET, a potent inhibitor of PP2A, is overexpressed on malignant melanoma. Silencing of SET enhances 67LR/PP2A signaling. Collectively, activation of 67LR/PP2A signaling may thus be a novel rational strategy for melanoma-specific treatment.


FEBS Letters | 2013

Phosphodiesterase 5 inhibitor acts as a potent agent sensitizing acute myeloid leukemia cells to 67-kDa laminin receptor-dependent apoptosis

Motofumi Kumazoe; Yoonhee Kim; Jaehoon Bae; Mika Takai; Motoki Murata; Yumi Suemasu; Kaori Sugihara; Shuya Yamashita; Shuntaro Tsukamoto; Yuhui Huang; Kanami Nakahara; Koji Yamada; Hirofumi Tachibana

(−)‐Epigallocatechin‐3‐O‐gallate (EGCG), a polyphenol in green tea, induces apoptosis in acute myeloid leukemia (AML) cells without affecting normal cells. In this study, we observed that cGMP acts as a cell death mediator of the EGCG‐induced anti‐AML effect through acid sphingomyelinase activation. EGCG activated the Akt/eNOS axis, a well‐known mechanism in vascular cGMP upregulation. We also observed that a major cGMP negative regulator, phosphodiesterase 5, was overexpressed in AML cells, and PDE5 inhibitor, an anti‐erectile dysfunction drug, synergistically enhanced the anti‐AML effect of EGCG. This combination regimen killed AML cells via overexpressed 67‐kDa laminin receptors.


Scientific Reports | 2015

Metabolic Profiling-based Data-mining for an Effective Chemical Combination to Induce Apoptosis of Cancer Cells

Motofumi Kumazoe; Yoshinori Fujimura; Shiori Hidaka; Yoonhee Kim; Kanako Murayama; Mika Takai; Yuhui Huang; Shuya Yamashita; Motoki Murata; Daisuke Miura; Hiroyuki Wariishi; Mari Maeda-Yamamoto; Hirofumi Tachibana

Green tea extract (GTE) induces apoptosis of cancer cells without adversely affecting normal cells. Several clinical trials reported that GTE was well tolerated and had potential anti-cancer efficacy. Epigallocatechin-3-O-gallate (EGCG) is the primary compound responsible for the anti-cancer effect of GTE; however, the effect of EGCG alone is limited. To identify GTE compounds capable of potentiating EGCG bioactivity, we performed metabolic profiling of 43 green tea cultivar panels by liquid chromatography–mass spectrometry (LC–MS). Here, we revealed the polyphenol eriodictyol significantly potentiated apoptosis induction by EGCG in vitro and in a mouse tumour model by amplifying EGCG-induced activation of the 67-kDa laminin receptor (67LR)/protein kinase B/endothelial nitric oxide synthase/protein kinase C delta/acid sphingomyelinase signalling pathway. Our results show that metabolic profiling is an effective chemical-mining approach for identifying botanical drugs with therapeutic potential against multiple myeloma. Metabolic profiling-based data mining could be an efficient strategy for screening additional bioactive compounds and identifying effective chemical combinations.


Oncogene | 2017

FOXO3 is essential for CD44 expression in pancreatic cancer cells

Motofumi Kumazoe; Mika Takai; Jaehoon Bae; Shun Hiroi; Yuhui Huang; Kanako Takamatsu; Yeong-Seon Won; Mai Yamashita; Shiori Hidaka; Shuya Yamashita; Shuhei Yamada; Motoki Murata; Shuntaro Tsukamoto; Hirofumi Tachibana

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer and the 5-year survival rate is only 5%. Several studies have suggested that cancer stem cells (CSCs) are thought to be involved in recurrence and metastasis and so it is essential to establish an approach targeting CSCs. Here we have demonstrated that cyclic guanosine monophosphate (cGMP) suppressed CD44 expression and the properties of CSCs in PDAC. Microarray analysis suggested that cGMP inhibited Forkhead box O3 (FOXO3), which is known as a tumor suppressor. Surprisingly, our data demonstrated that FOXO3 is essential for CD44 expression and the properties of CSCs. Our data also indicated that patients with high FOXO3 activation signatures had poor prognoses. This evidence suggested that cGMP induction and FOXO3 inhibition could be ideal candidates for pancreatic CSC.


Journal of Agricultural and Food Chemistry | 2017

Delphinidin prevents muscle atrophy and upregulates MIR-23a expression

Motoki Murata; Haruna Nonaka; Satomi Komatsu; Megumi Goto; Mai Morozumi; Shuhei Yamada; I-Chian Lin; Shuya Yamashita; Hirofumi Tachibana

Delphinidin, one of the major anthocyanidins, shows protective effects against a variety of pathologies, including cancer, inflammation, and muscle atrophy. The purpose of this study was to determine the preventive mechanism of delphinidin on disuse muscle atrophy. In vitro and in vivo models were used to validate the effects of delphinidin on the expression of MuRF1, miR-23a, and NFATc3. Delphinidin suppressed the upregulation of MuRF1 (1.77 ± 0.05 vs 1.03 ± 0.17, P < 0.05) expression and inhibited the downregulation of miR-23a (0.56 ± 0.05 vs 0.94 ± 0.06, P < 0.05) and NFATc3 (0.61 ± 0.02 vs 1.02 ± 0.08, P < 0.01) expression in dexamethasone-treated C2C12 cells. In gastrocnemius, muscle weight loss was prevented by oral administration of delphinidin. Moreover, delphinidin suppressed MuRF1 (3.35 ± 0.13 vs 2.26 ± 0.3, P < 0.01) expression and promoted miR-23a (0.58 ± 0.15 vs 2.25 ± 0.29, P < 0.001) and NFATc3 (0.85 ± 0.17 vs 1.54 ± 0.13, P < 0.001) expressions. Delphinidin intake may prevent disuse muscle atrophy by inducing miR-23a expression and suppressing MuRF1 expression.


Biochemical and Biophysical Research Communications | 2016

γ-Tocotrienol upregulates aryl hydrocarbon receptor expression and enhances the anticancer effect of baicalein.

Shuya Yamashita; Kiwako Baba; Akiko Makio; Motofumi Kumazoe; Yuhui Huang; I-Chian Lin; Jaehoon Bae; Motoki Murata; Shuhei Yamada; Hirofumi Tachibana

Previous studies have identified biomolecules that mediate the physiological actions of food factors, such as amino acids, vitamins, fatty acids, minerals, plant polyphenols, and lactobacilli, suggesting that our bodies are equipped with an innate system that senses which food factors are required to maintain our health. However, the effects of environmental factors on food factor sensing (FFS) remains largely unknown. Tocotorienols (T3s), which belongs to the vitamin E family, possess several physiological functions, including cholesterol lowering and neuroprotective effects. Here, we investigated the effects of naturally abundant γ-T3 on FFS-related gene expressions in melanoma using a DNA chip. Our results showed that γ-T3 increased the expression level of aryl hydrocarbon receptor (AhR), a sensing molecule to plant polyphenol baicalein. The co-treatment with γ-T3 and baicalein enhanced the anti-proliferative activity of baicalein, accompanied by the downstream events of AhR-activation induced by baicalein. These data suggest that γ-T3 upregulates AhR expression and enhances its sensitivity to baicalein.


Oncology Reports | 2015

Green tea polyphenol epigallocatechin-O-gallate induces cell death by acid sphingomyelinase activation in chronic myeloid leukemia cells.

Yuhui Huang; Motofumi Kumazoe; Jaehoon Bae; Shuhei Yamada; Mika Takai; Shiori Hidaka; Shuya Yamashita; Yoonhee Kim; Yeong-Seon Won; Motoki Murata; Shuntaro Tsukamoto; Hirofumi Tachibana

An epidemiological study showed that green tea consumption is associated with a reduced risk of hematopoietic malignancy. The major green tea polyphenol epigallocatechin-3-O-gallate (EGCG) is reported to have anticancer effects. Chronic myeloid leukemia (CML) is a major hematopoietic malignancy characterized by expansion of myeloid cells. In the present study, we showed EGCG-induced acid sphingomyelinase (ASM) activation and lipid raft clustering in CML cells. The ASM inhibitor desipramine significantly reduced EGCG-induced cell death. Protein kinase Cδ is a well-known kinase that plays an important role in ASM activation. We observed EGCG-induced phos-phorylation of protein kinase Cδ at Ser664. Importantly, EGCG-induced ASM activation was significantly reduced by pretreatment of CML cells with the soluble guanylate cyclase inhibitor NS2028, suggesting that EGCG induced ASM activation through the cyclic guanosine monophosphate (cGMP)-dependent pathway. Indeed, pharmacological inhibition of a cGMP-negative regulator enhanced the anti-CML effect of EGCG. These results indicate that EGCG-induced cell death via the cGMP/ASM pathway in CML cells.


Journal of Agricultural and Food Chemistry | 2014

In situ label-free visualization of orally dosed strictinin within mouse kidney by MALDI-MS imaging.

Yoonhee Kim; Yoshinori Fujimura; Masako Sasaki; Xue Yang; Daichi Yukihira; Daisuke Miura; Yumi Unno; Koretsugu Ogata; Hiroki Nakajima; Shuya Yamashita; Kanami Nakahara; Motoki Murata; I-Chian Lin; Hiroyuki Wariishi; Koji Yamada; Hirofumi Tachibana

Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique for visualizing the distribution of a wide range of biomolecules within tissue sections. However, methodology for visualizing a bioactive ellagitannin has not yet been established. This paper presents a novel in situ label-free MALDI-MSI technique for visualizing the distribution of strictinin, a bioactive ellagitannin found in green tea, within mammalian kidney after oral dosing. Among nine representative matrix candidates, 1,5-diaminonaphthalene (1,5-DAN), harmane, and ferulic acid showed higher sensitivity to strictinin spotted onto a MALDI sample plate. Of these, 1,5-DAN enables visualization of a two-dimensional image of strictinin directly spotted on mouse kidney sections with the highest sensitivity. Furthermore, 1,5-DAN-based MALDI-MSI could detect the unique distribution of orally dosed strictinin within kidney sections. This in situ label-free imaging technique will contribute to the localization analysis of strictinin and its biological mechanisms.


Journal of Biological Chemistry | 2017

Green tea polyphenol epigallocatechin-3-gallate suppresses toll-like receptor 4 expression via up-regulation of E3 ubiquitin-protein ligase RNF216

Motofumi Kumazoe; Yuki Nakamura; Mai Yamashita; Takashi Suzuki; Kanako Takamatsu; Yuhui Huang; Jaehoon Bae; Shuya Yamashita; Motoki Murata; Shuhei Yamada; Yuki Shinoda; Wataru Yamaguchi; Yui Toyoda; Hirofumi Tachibana

Toll-like receptor 4 (TLR4) plays an essential role in innate immunity through inflammatory cytokine induction. Recent studies demonstrated that the abnormal activation of TLR4 has a pivotal role in obesity-induced inflammation, which is associated with several diseases, including hyperinsulinemia, hypertriglyceridemia, and cardiovascular disease. Here we demonstrate that (−)-epigallocatechin-3-O-gallate, a natural agonist of the 67-kDa laminin receptor (67LR), suppressed TLR4 expression through E3 ubiquitin-protein ring finger protein 216 (RNF216) up-regulation. Our data indicate cyclic GMP mediates 67LR agonist-dependent RNF216 up-regulation. Moreover, we show that the highly absorbent 67LR agonist (−)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3″Me) significantly attenuated TLR4 expression in the adipose tissue. EGCG3″Me completely inhibited the high-fat/high-sucrose (HF/HS)-induced up-regulation of tumor necrosis factor α in adipose tissue and serum monocyte chemoattractant protein-1 increase. Furthermore, this agonist intake prevented HF/HS-induced hyperinsulinemia and hypertriglyceridemia. Taken together, 67LR presents an attractive target for the relief of obesity-induced inflammation.


International Immunopharmacology | 2015

1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice

Yoonhee Kim; Xue Yang; Shuya Yamashita; Motofumi Kumazoe; Yuhui Huang; Kanami Nakahara; Yeong Seon Won; Motoki Murata; I-Chian Lin; Hirofumi Tachibana

1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) is a gallotannin isolated from various plants. In a previous study, it was reported that PGG suppressed interleukin (IL)-4 induced signal pathway in B cell which is indispensable for immunoglobulin E (IgE) production. However, the suppressive effect of PGG on IgE production in allergen-sensitized mice remains unclear. Therefore, the aim of this study was to investigate the inhibitory effect of PGG on IgE production in ovalbumin (OVA)-sensitized mice. Mice orally administered PGG showed a decrease in total and OVA-specific IgE levels in serum. Oral administration of PGG strongly suppressed production of type 2 T helper (IL-4 and IL-13), type 1 T helper (IFN-γ), and pro-inflammatory cytokines (TNF-α and IL-6), but not anti-inflammatory cytokine (IL-10) from splenocytes of OVA-sensitized mice against OVA re-stimulation. A population of T regulatory (Treg) cells with immunosuppressive properties was increased in mesenteric lymph nodes and spleen of PGG-fed mice. PGG administration not only reduced expression levels of eotaxin, tissue inhibitors of metalloproteinases-1, and TNF-α, which assisted with IgE production, but also increased the expression of insulin-like growth factor binding protein-3 which inhibits IgE production. Additionally, PGG increased the levels of Treg cell-inducing factors such as IL-2, IL-10 and platelet factor-4 in serum. These data suggest that the inhibitory effect of PGG on IgE production could be partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors.

Collaboration


Dive into the Motoki Murata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge