Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoko Koyama is active.

Publication


Featured researches published by Motoko Koyama.


Nature Medicine | 2012

Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease

Motoko Koyama; Rachel D. Kuns; Stuart D. Olver; Neil C. Raffelt; Yana A. Wilson; Alistair L. J. Don; Katie E. Lineburg; Melody Cheong; Renee J. Robb; Kate A. Markey; Antiopi Varelias; Bernard Malissen; Günter J. Hämmerling; Andrew D. Clouston; Christian R. Engwerda; Purnima Bhat; Kelli P. A. MacDonald; Geoffrey R. Hill

The presentation pathways by which allogeneic peptides induce graft-versus-host disease (GVHD) are unclear. We developed a bone marrow transplant (BMT) system in mice whereby presentation of a processed recipient peptide within major histocompatibility complex (MHC) class II molecules could be spatially and temporally quantified. Whereas donor antigen presenting cells (APCs) could induce lethal acute GVHD via MHC class II, recipient APCs were 100–1,000 times more potent in this regard. After myeloablative irradiation, T cell activation and memory differentiation occurred in lymphoid organs independently of alloantigen. Unexpectedly, professional hematopoietic-derived recipient APCs within lymphoid organs had only a limited capacity to induce GVHD, and dendritic cells were not required. In contrast, nonhematopoietic recipient APCs within target organs induced universal GVHD mortality and promoted marked alloreactive donor T cell expansion within the gastrointestinal tract and inflammatory cytokine generation. These data challenge current paradigms, suggesting that experimental lethal acute GVHD can be induced by nonhematopoietic recipient APCs.


Clinical Cancer Research | 2011

Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation

Isao Tawara; Motoko Koyama; Chen Liu; Tomomi Toubai; Dafydd G. Thomas; Rebecca Evers; Peter Chockley; Evelyn Nieves; Yaping Sun; Kathleen P. Lowler; Chelsea Malter; Geoffrey R. Hill; Pavan Reddy

Purpose: The graft-versus-tumor (GVT) effect is a potent form of immunotherapy against many hematologic malignancies and some solid tumors. The beneficial GVT effect after allogeneic bone marrow transplantation (BMT) is tightly linked to its most significant complication, graft-versus-host disease (GVHD). The role of interleukin-6 (IL-6) after allogeneic BMT is not well understood. This study used a series of complementary knockout and antibody blockade strategies to analyze the impact of IL-6 in multiple clinically relevant murine models of GVHD and GVT. Experimental Design: We examined the effect of the source of IL-6 by analyzing the role IL-6 deficiency in donor T cells, donor bone marrow or in host tissues. We confirmed and extended the relevance of IL-6 deficiency on GVHD and GVT by treating BMT recipients with anti-mouse IL-6 receptor (IL-6R), MR16-1. Results: Deficiency of IL-6 in donor T cells led to prolongation of survival. Total inhibition of IL-6 with MR16-1 caused an even greater reduction in GVHD-induced mortality. The reduction in GVHD was independent of the direct effects on T effector cell expansion or donor regulatory T cells. GVT responses were preserved after treatment with MR16-1. Conclusion: MR16-1 treatment reduced GVHD and preserved sufficient GVT. Tocilizumab, a humanized anti–IL-6R monoclonal antibody (mAb), is approved in several countries including the United States and European Union for the treatment of rheumatoid arthritis and other inflammatory diseases. Blockade of IL-6 with anti–IL-6R mAb therapy may be testable in clinical trials as an adjunct to prevent GVHD in BMT patients without a significant loss of GVT. Clin Cancer Res; 17(1); 77–88. ©2010 AACR.


Journal of Experimental Medicine | 2011

The Wnt agonist R-spondin1 regulates systemic graft-versus-host disease by protecting intestinal stem cells

Shuichiro Takashima; Masanori Kadowaki; Kazutoshi Aoyama; Motoko Koyama; Takeshi Oshima; Kazuma Tomizuka; Koichi Akashi; Takanori Teshima

R-spondin1 stimulates the proliferation of intestinal stem cells through the Wnt signaling pathway and protects against graft-versus-host disease.


Blood | 2009

Plasmacytoid dendritic cells prime alloreactive T cells to mediate graft-versus-host disease as antigen-presenting cells

Motoko Koyama; Daigo Hashimoto; Kazutoshi Aoyama; Ken-ichi Matsuoka; Kennosuke Karube; Hiroaki Niiro; Mine Harada; Mitsune Tanimoto; Koichi Akashi; Takanori Teshima

Dendritic cells (DCs) can be classified into 2 distinct subsets: conventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs can prime antigen-specific T-cell immunity, whereas in vivo function of pDCs as antigen-presenting cells remains controversial. We evaluated the contribution of pDCs to allogeneic T-cell responses in vivo in mouse models of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation by an add-back study of MHC-expressing pDCs into major histocompatibility complex-deficient mice that were resistant to GVHD. Alloantigen expression on pDCs alone was sufficient to prime alloreactive T cells and cause GVHD. An inflammatory environment created by host irradiation has the decisive role in maturing pDCs for T-cell priming but this process does not require Toll-like receptor signaling. Thus, functional outcomes of pDC-T-cell interactions depend on the immunologic context of encounter. To our knowledge, these results are the first to directly demonstrate an in vivo pathogenic role of pDCs as antigen-presenting cells in an antigen-specific T cell-mediated disease in the absence of other DC subsets and to provide important insight into developing strategies for tolerance induction in transplantation.


Blood | 2012

Identification and expansion of highly suppressive CD8 +FoxP3 + regulatory T cells after experimental allogeneic bone marrow transplantation

Renee J. Robb; Katie E. Lineburg; Rachel D. Kuns; Yana A. Wilson; Neil C. Raffelt; Stuart D. Olver; Antiopi Varelias; Kylie A. Alexander; Bianca E. Teal; Tim Sparwasser; Günter J. Hämmerling; Kate A. Markey; Motoko Koyama; Andrew D. Clouston; Christian R. Engwerda; Geoffrey R. Hill; Kelli P. A. MacDonald

FoxP3(+) confers suppressive properties and is confined to regulatory T cells (T(reg)) that potently inhibit autoreactive immune responses. In the transplant setting, natural CD4(+) T(reg) are critical in controlling alloreactivity and the establishment of tolerance. We now identify an important CD8(+) population of FoxP3(+) T(reg) that convert from CD8(+) conventional donor T cells after allogeneic but not syngeneic bone marrow transplantation. These CD8(+) T(reg) undergo conversion in the mesenteric lymph nodes under the influence of recipient dendritic cells and TGF-β. Importantly, this population is as important for protection from GVHD as the well-studied natural CD4(+)FoxP3(+) population and is more potent in exerting class I-restricted and antigen-specific suppression in vitro and in vivo. Critically, CD8(+)FoxP3(+) T(reg) are exquisitely sensitive to inhibition by cyclosporine but can be massively and specifically expanded in vivo to prevent GVHD by coadministering rapamycin and IL-2 antibody complexes. CD8(+)FoxP3(+) T(reg) thus represent a new regulatory population with considerable potential to preferentially subvert MHC class I-restricted T-cell responses after bone marrow transplantation.


Journal of Clinical Investigation | 2014

CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease.

Kylie A. Alexander; Ryan Flynn; Katie E. Lineburg; Rachel D. Kuns; Bianca E. Teal; Stuart D. Olver; Mary Lor; Neil C. Raffelt; Motoko Koyama; Lucie Leveque; Laetitia Le Texier; Michelle Melino; Kate A. Markey; Antiopi Varelias; Christian R. Engwerda; Jonathan S. Serody; Baptiste Janela; Florent Ginhoux; Andrew D. Clouston; Bruce R. Blazar; Geoffrey R. Hill; Kelli P. A. MacDonald

Chronic GVHD (cGVHD) is the major cause of late, nonrelapse death following stem cell transplantation and characteristically develops in organs such as skin and lung. Here, we used multiple murine models of cGVHD to investigate the contribution of macrophage populations in the development of cGVHD. Using an established IL-17-dependent sclerodermatous cGVHD model, we confirmed that macrophages infiltrating the skin are derived from donor bone marrow (F4/80+CSF-1R+CD206+iNOS-). Cutaneous cGVHD developed in a CSF-1/CSF-1R-dependent manner, as treatment of recipients after transplantation with CSF-1 exacerbated macrophage infiltration and cutaneous pathology. Additionally, recipients of grafts from Csf1r-/- mice had substantially less macrophage infiltration and cutaneous pathology as compared with those receiving wild-type grafts. Neither CCL2/CCR2 nor GM-CSF/GM-CSFR signaling pathways were required for macrophage infiltration or development of cGVHD. In a different cGVHD model, in which bronchiolitis obliterans is a prominent manifestation, F4/80+ macrophage infiltration was similarly noted in the lungs of recipients after transplantation, and lung cGVHD was also IL-17 and CSF-1/CSF-1R dependent. Importantly, depletion of macrophages using an anti-CSF-1R mAb markedly reduced cutaneous and pulmonary cGVHD. Taken together, these data indicate that donor macrophages mediate the development of cGVHD and suggest that targeting CSF-1 signaling after transplantation may prevent and treat cGVHD.


Journal of Immunology | 2013

Induced regulatory T cells promote tolerance when stabilized by rapamycin and IL-2 in vivo

Ping Zhang; Siok-Keen Tey; Motoko Koyama; Rachel D. Kuns; Stuart D. Olver; Katie E. Lineburg; Mary Lor; Bianca E. Teal; Neil C. Raffelt; Jyothy Raju; Lucie Leveque; Kate A. Markey; Antiopi Varelias; Andrew D. Clouston; Steven W. Lane; Kelli P. A. MacDonald; Geoffrey R. Hill

Natural regulatory T cells (nTregs) play an important role in tolerance; however, the small numbers of cells obtainable potentially limit the feasibility of clinical adoptive transfer. Therefore, we studied the feasibility and efficacy of using murine-induced regulatory T cells (iTregs) for the induction of tolerance after bone marrow transplantation. iTregs could be induced in large numbers from conventional donor CD4 and CD8 T cells within 1 wk and were highly suppressive. During graft-versus-host disease (GVHD), CD4 and CD8 iTregs suppressed the proliferation of effector T cells and the production of proinflammatory cytokines. However, unlike nTregs, both iTreg populations lost Foxp3 expression within 3 wk in vivo, reverted to effector T cells, and exacerbated GVHD. The loss of Foxp3 in iTregs followed homeostatic and/or alloantigen-driven proliferation and was unrelated to GVHD. However, the concurrent administration of rapamycin, with or without IL-2/anti–IL-2 Ab complexes, to the transplant recipients significantly improved Foxp3 stability in CD4 iTregs (and, to a lesser extent, CD8 iTregs), such that they remained detectable 12 wk after transfer. Strikingly, CD4, but not CD8, iTregs could then suppress Teff proliferation and proinflammatory cytokine production and prevent GVHD in an equivalent fashion to nTregs. However, at high numbers and when used as GVHD prophylaxis, Tregs potently suppress graft-versus-leukemia effects and so may be most appropriate as a therapeutic modality to treat GVHD. These data demonstrate that CD4 iTregs can be produced rapidly in large, clinically relevant numbers and, when transferred in the presence of systemic rapamycin and IL-2, induce tolerance in transplant recipients.


Journal of Clinical Investigation | 2014

Type I IFN signaling in CD8– DCs impairs Th1-dependent malaria immunity

Ashraful Haque; Shannon E. Best; Marcela Montes de Oca; Kylie R. James; Anne Ammerdorffer; Chelsea L. Edwards; Fabian de Labastida Rivera; Fiona H. Amante; Patrick T. Bunn; Meru Sheel; Ismail Sebina; Motoko Koyama; Antiopi Varelias; Paul J. Hertzog; Ulrich Kalinke; Sin Yee Gun; Laurent Rénia; Christiane Ruedl; Kelli P. A. MacDonald; Geoffrey R. Hill; Christian R. Engwerda

Many pathogens, including viruses, bacteria, and protozoan parasites, suppress cellular immune responses through activation of type I IFN signaling. Recent evidence suggests that immune suppression and susceptibility to the malaria parasite, Plasmodium, is mediated by type I IFN; however, it is unclear how type I IFN suppresses immunity to blood-stage Plasmodium parasites. During experimental severe malaria, CD4+ Th cell responses are suppressed, and conventional DC (cDC) function is curtailed through unknown mechanisms. Here, we tested the hypothesis that type I IFN signaling directly impairs cDC function during Plasmodium infection in mice. Using cDC-specific IFNAR1-deficient mice, and mixed BM chimeras, we found that type I IFN signaling directly affects cDC function, limiting the ability of cDCs to prime IFN-γ-producing Th1 cells. Although type I IFN signaling modulated all subsets of splenic cDCs, CD8- cDCs were especially susceptible, exhibiting reduced phagocytic and Th1-promoting properties in response to type I IFNs. Additionally, rapid and systemic IFN-α production in response to Plasmodium infection required type I IFN signaling in cDCs themselves, revealing their contribution to a feed-forward cytokine-signaling loop. Together, these data suggest abrogation of type I IFN signaling in CD8- splenic cDCs as an approach for enhancing Th1 responses against Plasmodium and other type I IFN-inducing pathogens.


Blood | 2009

Improved outcome of allogeneic bone marrow transplantation due to breastfeeding-induced tolerance to maternal antigens.

Kazutoshi Aoyama; Motoko Koyama; Ken-ichi Matsuoka; Daigo Hashimoto; Tatsuo Ichinohe; Mine Harada; Koichi Akashi; Mitsune Tanimoto; Takanori Teshima

Exposure of offspring to noninherited maternal antigens (NIMAs) during pregnancy may have an impact on transplantations performed later in life. Using a mouse model, we recently showed that bone marrow transplantation (BMT) from NIMA-exposed offspring to the mother led to a reduction of graft-versus-host disease (GVHD). Since offspring can also be exposed to NIMAs by breastfeeding after birth, we tested whether breast milk could mediate the tolerogenic NIMA effect. We found that oral exposure to NIMAs by breastfeeding alone was sufficient to reduce GVHD, and that in utero exposure to NIMAs is required for maximum reduction of GVHD. The tolerogenic milk effects disappeared when donor mice were injected with CD25 monoclonal antibodies during the lactation period, suggesting a CD4(+)CD25(+) regulatory T cell-dependent mechanism. Our results suggest a previously unknown impact of breastfeeding on the outcome of transplantation.


Blood | 2015

Lung parenchyma-derived IL-6 promotes IL-17A-dependent acute lung injury after allogeneic stem cell transplantation.

Antiopi Varelias; Kate H. Gartlan; Ellen Kreijveld; Stuart D. Olver; Mary Lor; Rachel D. Kuns; Katie E. Lineburg; Bianca E. Teal; Neil C. Raffelt; Melody Cheong; Kylie A. Alexander; Motoko Koyama; Kate A. Markey; Elise Sturgeon; Justine Leach; Pavan Reddy; Glen A. Kennedy; Gregory A. Yanik; Bruce R. Blazar; Siok-Keen Tey; Andrew D. Clouston; Kelli P. A. MacDonald; Kenneth R. Cooke; Geoffrey R. Hill

Idiopathic pneumonia syndrome (IPS) is a relatively common, frequently fatal clinical entity, characterized by noninfectious acute lung inflammation following allogeneic stem cell transplantation (SCT), the mechanisms of which are unclear. In this study, we demonstrate that immune suppression with cyclosporin after SCT limits T-helper cell (Th) 1 differentiation and interferon-γ secretion by donor T cells, which is critical for inhibiting interleukin (IL)-6 generation from lung parenchyma during an alloimmune response. Thereafter, local IL-6 secretion induces donor alloantigen-specific Th17 cells to preferentially expand within the lung, and blockade of IL-17A or transplantation of grafts lacking the IL-17 receptor prevents disease. Studies using IL-6(-/-) recipients or IL-6 blockade demonstrate that IL-6 is the critical driver of donor Th17 differentiation within the lung. Importantly, IL-6 is also dysregulated in patients undergoing clinical SCT and is present at very high levels in the plasma of patients with IPS compared with SCT recipients without complications. Furthermore, at the time of diagnosis, plasma IL-6 levels were higher in a subset of IPS patients who were nonresponsive to steroids and anti-tumor necrosis factor therapy. In sum, pulmonary-derived IL-6 promotes IPS via the induction of Th17 differentiation, and strategies that target these cytokines represent logical therapeutic approaches for IPS.

Collaboration


Dive into the Motoko Koyama's collaboration.

Top Co-Authors

Avatar

Rachel D. Kuns

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Geoffrey R. Hill

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kate A. Markey

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katie E. Lineburg

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Antiopi Varelias

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stuart D. Olver

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Neil C. Raffelt

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianca E. Teal

QIMR Berghofer Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge