Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoko Mukai is active.

Publication


Featured researches published by Motoko Mukai.


PLOS ONE | 2009

Seasonal Differences of Gene Expression Profiles in Song Sparrow (Melospiza melodia) Hypothalamus in Relation to Territorial Aggression

Motoko Mukai; Kirstin Replogle; Jenny Drnevich; Gang Wang; Douglas W. Wacker; Mark Band; David F. Clayton; John C. Wingfield

Background Male song sparrows (Melospiza melodia) are territorial year-round; however, neuroendocrine responses to simulated territorial intrusion (STI) differ between breeding (spring) and non-breeding seasons (autumn). In spring, exposure to STI leads to increases in luteinizing hormone and testosterone, but not in autumn. These observations suggest that there are fundamental differences in the mechanisms driving neuroendocrine responses to STI between seasons. Microarrays, spotted with EST cDNA clones of zebra finch, were used to explore gene expression profiles in the hypothalamus after territorial aggression in two different seasons. Methodology/Principal Findings Free-living territorial male song sparrows were exposed to either conspecific or heterospecific (control) males in an STI in spring and autumn. Behavioral data were recorded, whole hypothalami were collected, and microarray hybridizations were performed. Quantitative PCR was performed for validation. Our results show 262 cDNAs were differentially expressed between spring and autumn in the control birds. There were 173 cDNAs significantly affected by STI in autumn; however, only 67 were significantly affected by STI in spring. There were 88 cDNAs that showed significant interactions in both season and STI. Conclusions/Significance Results suggest that STI drives differential genomic responses in the hypothalamus in the spring vs. autumn. The number of cDNAs differentially expressed in relation to season was greater than in relation to social interactions, suggesting major underlying seasonal effects in the hypothalamus which may determine the differential response upon social interaction. Functional pathway analyses implicated genes that regulate thyroid hormone action and neuroplasticity as targets of this neuroendocrine regulation.


Journal of Biological Rhythms | 2008

Behavioral Rhythmicity of Mice Lacking AhR and Attenuation of Light-Induced Phase Shift by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin

Motoko Mukai; Tien-Min Lin; Richard E. Peterson; Paul S. Cooke; Shelley A. Tischkau

Transcription factors belonging to the Per/Arnt/Sim (PAS) domain family are highly conserved and many are involved in circadian rhythm regulation. One member of this family, aryl hydrocarbon receptor (AhR), is an orphan receptor whose physiological role is unknown. Recent findings have led to the hypothesis that AhR has a role in circadian rhythm, which is the focus of the present investigation. First, time-of-day-dependent mRNA expression of AhR and its signaling target, cytochrome p4501A1 (Cyp1a1), was determined in C57BL/6J mice by quantitative RT-PCR. Circadian expression of AhR and Cyp1a1 was observed both in the suprachiasmatic nucleus (SCN) and liver. Next, the circadian phenotype of mice lacking AhR (AhRKO) was investigated using behavioral monitoring. Intact AhRKO mice had robust circadian rhythmicity with a similar tau under constant conditions compared to wild-type mice, but a significant difference in tau was observed between genotypes in ovariectomized female mice. Time to reentrainment following 6-h advances or delays of the light/dark cycle was not significantly different between genotypes. However, mice exposed to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 µg/kg of body weight) displayed decreased phase shifts in response to light and had altered expression of Per1 and Bmal1. These results suggest that chronic activation of AhR may affect the ability of the circadian timekeeping system to adjust to alterations in environmental lighting by affecting canonical clock genes. Further studies are necessary to decipher the mechanism of how AhR agonists could disrupt light-induced phase shifts. If AhR does have a role in circadian rhythm, it may share redundant roles with other PAS domain proteins and/or the role of AhR may not be exhibited in the behavioral activity rhythm, but could be important elsewhere in the peripheral circadian system.


Biology of Reproduction | 2004

Estrogenicity of the Isoflavone Metabolite Equol on Reproductive and Non-Reproductive Organs in Mice

Vimal Selvaraj; Melissa A. Zakroczymski; Afia Naaz; Motoko Mukai; Young H. Ju; Daniel R. Doerge; John A. Katzenellenbogen; William G. Helferich; Paul S. Cooke

Abstract Equol, a metabolite of the phytoestrogen daidzein, is present at significant levels in some humans who consume soy and in rodents fed soy-based diets. Equol is estrogenic in vitro, but there have been limited studies of its activity in vivo. We evaluated equol effects on reproductive and non-reproductive endpoints in mice. Ovariectomized age-matched (30-day-old) female C57BL/6 mice were fed phytoestrogen-free diets and given a racemic mixture of equol by daily injections (0, 4, 8, 12, or 20 mg [kg body weight]−1 day−1) or in the diet (0, 500, or 1000 ppm) for 12 days. Mice were killed, and serum concentrations of total and aglycone equol were measured. Total serum equol concentrations ranged from 1.4 to 7.5 μM with increasing doses of injected equol, but uterine weight increased significantly only at 12 and 20 mg (kg body weight)−1 day−1. Dietary equol at 500 or 1000 ppm produced total serum equol concentrations of 5.9 and 8.1 μM, respectively, comparable with those in rodents consuming certain high-soy chows; the proportion of equol present as the free aglycone was much lower with dietary administration than injections, which may be a factor in the greater biological effects induced by injections. Dietary equol did not significantly increase uterine weight. Increasing dietary and injected equol doses caused a dose-dependent increase in vaginal epithelial thickness. Uterine epithelial proliferation was increased by equol injections at 8–20 mg (kg body weight)−1 day−1 and 1000 ppm dietary equol. Neither dietary nor injected equol decreased thymic or adipose weights. In conclusion, equol is a weak estrogen with modest effects on endpoints regulated by estrogen receptor α when present at serum levels seen in rodents fed soy-based diets, but quantities present in humans may not be sufficient to induce estrogenic effects, although additive effects of equol with other phytoestrogens may occur.


PLOS ONE | 2012

RNA interference of gonadotropin-inhibitory hormone gene induces arousal in songbirds

Takayoshi Ubuka; Motoko Mukai; Jordan Wolfe; Ryan Beverly; Sarah Clegg; Ariel Wang; Serena Hsia; Molly Meng-Jung Li; Jesse S. Krause; Takanobu Mizuno; Yujiro Fukuda; Kazuyoshi Tsutsui; George E. Bentley; John C. Wingfield

Gonadotropin-inhibitory hormone (GnIH) was originally identified in quail as a hypothalamic neuropeptide inhibitor of pituitary gonadotropin synthesis and release. However, GnIH neuronal fibers do not only terminate in the median eminence to control anterior pituitary function but also extend widely in the brain, suggesting it has multiple roles in the regulation of behavior. To identify the role of GnIH neurons in the regulation of behavior, we investigated the effect of RNA interference (RNAi) of the GnIH gene on the behavior of white-crowned sparrows, a highly social songbird species. Administration of small interfering RNA against GnIH precursor mRNA into the third ventricle of male and female birds reduced resting time, spontaneous production of complex vocalizations, and stimulated brief agonistic vocalizations. GnIH RNAi further enhanced song production of short duration in male birds when they were challenged by playbacks of novel male songs. These behaviors resembled those of breeding birds during territorial defense. The overall results suggest that GnIH gene silencing induces arousal. In addition, the activities of male and female birds were negatively correlated with GnIH mRNA expression in the paraventricular nucleus. Density of GnIH neuronal fibers in the ventral tegmental area was decreased by GnIH RNAi treatment in female birds, and the number of gonadotropin-releasing hormone neurons that received close appositions of GnIH neuronal fiber terminals was negatively correlated with the activity of male birds. In summary, GnIH may decrease arousal level resulting in the inhibition of specific motivated behavior such as in reproductive contexts.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Impact of experience-dependent and -independent factors on gene expression in songbird brain

Jenny Drnevich; Kirstin Replogle; Peter V. Lovell; Thomas P. Hahn; Frank Johnson; Thomas Gerald Mast; Ernest J. Nordeen; Kathy W. Nordeen; Christy Strand; Sarah E. London; Motoko Mukai; John C. Wingfield; Arthur P. Arnold; Gregory F. Ball; Eliot A. Brenowitz; Juli Wade; Claudio V. Mello; David F. Clayton

Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical “constitutive plasticity” (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as “ribosome” (expressed more highly in juvenile brain) and “dopamine metabolic process” (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience.


General and Comparative Endocrinology | 2009

Endocrine disruption in the context of life cycles: Perception and transduction of environmental cues

John C. Wingfield; Motoko Mukai

Environmental and social stresses have major impacts on the life cycles of organisms. Furthermore, habitat disturbance/destruction, global climate change, and existence of endocrine disrupting chemicals (EDCs) due to human activities are increasingly likely to pose additive and synergistic stresses that could have potential deleterious effects on physiological function in vertebrates. Central to an organisms life cycle is the ability to respond to environmental cues, physical and social. Environmental signals may act directly on endocrine tissues, but most act through neural pathways, and neuroendocrine and endocrine secretions that affect changes in morphology, physiology and behavior. While most investigations focus on endocrine secretions and their effects, we know much less about perception and transduction of environmental signals. Additionally, some populations of vertebrates, from fish to mammals, temporarily resist environmental and social stresses, and breed successfully. However, many show varying degrees of failure, sometimes resulting in marked population decline. There is potential for EDCs to act at all levels of the response systems to environmental cues. Because animals live in diverse habitats, there is variation in susceptibility to disruption of response systems to environmental cues. Although this may be partly due to genetic differences at a level of receptors and/or metabolism, fundamental differences in how species perceive environmental cues and respond to them may also be major factors. Here we discuss how EDCs may interact with the perception and transduction of environmental cues that are important for all organisms in their natural world. This may introduce a new perspective on the effects of environmental endocrine disruptors.


PeerJ | 2014

Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior

Christopher N. Balakrishnan; Motoko Mukai; Rusty A. Gonser; John C. Wingfield; Sarah E. London; Elaina M. Tuttle; David F. Clayton

Emberizid sparrows (emberizidae) have played a prominent role in the study of avian vocal communication and social behavior. We present here brain transcriptomes for three emberizid model systems, song sparrow Melospiza melodia, white-throated sparrow Zonotrichia albicollis, and Gambel’s white-crowned sparrow Zonotrichia leucophrys gambelii. Each of the assemblies covered fully or in part, over 89% of the previously annotated protein coding genes in the zebra finch Taeniopygia guttata, with 16,846, 15,805, and 16,646 unique BLAST hits in song, white-throated and white-crowned sparrows, respectively. As in previous studies, we find tissue of origin (auditory forebrain versus hypothalamus and whole brain) as an important determinant of overall expression profile. We also demonstrate the successful isolation of RNA and RNA-sequencing from post-mortem samples from building strikes and suggest that such an approach could be useful when traditional sampling opportunities are limited. These transcriptomes will be an important resource for the study of social behavior in birds and for data driven annotation of forthcoming whole genome sequences for these and other bird species.


Biology of Reproduction | 2005

Altered prostatic epithelial proliferation and apoptosis, prostatic development, and serum testosterone in mice lacking cyclin-dependent kinase inhibitors.

Motoko Mukai; Qiang Dong; Matthew P. Hardy; Hiroaki Kiyokawa; Richard E. Peterson; Paul S. Cooke

Abstract Normal prostatic development and some prostatic diseases involve altered expression of the cell-cycle regulators p27 and p21 (also known as CDKN1B and CDKN1A, respectively). To determine the role of these proteins in the prostate, we examined prostatic phenotype and development in mice lacking p27 and/or p21. In p27-knockout (p27KO) mice, epithelial proliferation was increased 2- and 3.8-fold in the ventral and dorsolateral prostate, respectively, versus wild-type (WT) mice, although prostatic weights were not different. Epithelial apoptosis was increased in p27KO mice and may account for the lack of a concurrent increase in weight. Testosterone deficiency observed in this group was not the cause of this increase, because vehicle- and testosterone-treated p27KO mice had similar percentages of apoptotic cells. Also observed was a trend toward a decreased functional epithelial cytodifferentiation, indicating a potential role of p27 in this process. Conversely, dorsolateral prostate and seminal vesicle (SV) of p21-knockout (p21KO) mice, and all prostatic lobes and SV of p21/p27 double-knockout mice, weighed significantly less compared to the WT mice, and their epithelial proliferation was normal. Decreased testosterone concentrations may contribute to the decreased prostatic weights. However, other factors may be involved, because testosterone replacement only partially restored prostatic weights. We conclude that loss of p27 increases prostatic epithelial proliferation and alters differentiation but does not result in prostatic hyperplasia because of increased epithelial cell loss. The p21KO mice showed phenotypes distinctly different from those of p27KO mice, suggesting nonredundant roles of p21 and p27 in prostatic development. Loss of p27 or of both p21 and p27 results in serum testosterone deficiency, complicating analysis of the prostatic effects of these cell-cycle regulators.


Reproductive Toxicology | 2015

4-Vinylcyclohexene diepoxide reduces fertility in female Siberian hamsters when treated during their reproductively active and quiescent states.

Kristen A. Roosa; Motoko Mukai; Ned J. Place

The industrial compound 4-vinylcyclohexene diepoxide (VCD) destroys ovarian follicles and reduces fertility in rodents, but to date VCD has not been tested in species that experience seasonal anestrus. To determine if VCD destroys follicles when administered during reproductive quiescence, Siberian hamsters were treated with VCD (240mg/kg i.p. daily for 10 days) during short days, and outcomes were compared with reproductively active females that were maintained and treated in long days. Primordial follicle numbers were significantly reduced by VCD under both day lengths, and reproductive quiescence in short days did not appear to render the ovaries less susceptible to VCD-induced follicle depletion. Independent of day length and reproductive state, VCD-treated hamsters weaned substantially fewer offspring than controls. These results suggest that time of year may not be an important consideration for optimizing use of VCD in the field when the target pest species is a seasonally breeding rodent.


Biology of Reproduction | 2009

Increased Proliferation but Decreased Steroidogenic Capacity in Leydig Cells from Mice Lacking Cyclin-Dependent Kinase Inhibitor 1B

Han Lin; Guo-Xin Hu; Lei Dong; Qiang Dong; Motoko Mukai; Bingbing Chen; Denise R. Holsberger; Chantal M. Sottas; Paul S. Cooke; Qingquan Lian; Xiao-Kun Li; Ren-Shan Ge

Abstract Proliferating cells express cyclins, cell cycle regulatory proteins that regulate the activity of cyclin-dependent kinases (CDKs). The actions of CDKs are regulated by specific inhibitors, the CDK inhibitors (CDKIs), which are comprised of the Cip/Kip and INK4 families. Expression of the Cip/Kip CDKI 1B (Cdkn1b, encoding protein CDKN1B, also called p27kip1) in developing Leydig cells (LCs) has been reported, but the function of CDKN1B in LCs is unclear. The goal of the present study was to determine the effects of CDKN1B on LC proliferation and steroidogenesis by examining these parameters in Cdkn1b knockout (Cdkn1b−/−) mice. LC proliferation was measured by bromodeoxyuridine incorporation. Testicular testosterone levels, mRNA levels, and enzyme activities of steroidogenic enzymes were compared in Cdkn1b−/− and Cdkn1b+/+ mice. The labeling index of LCs in Cdkn1b−/− mice was 1.5% ± 0.2%, almost 7-fold higher than 0.2% ± 0.08% (P < 0.001) in the Cdkn1b+/+ control mice. LC number per testis in Cdkn1b−/− mice was 2-fold that seen in the Cdkn1b+/+ control mice. However, testicular testosterone levels, mRNA levels of steroidogenic acute regulatory protein (Star), cholesterol side-chain cleavage enzyme (Cyp11a1), and 3beta-hydroxtsteroid dehydrogenase 6 (Hsd3b6), and their respective proteins, were significantly lower in Cdkn1b−/− mice. We conclude that deficiency of CDKN1B increased LC proliferation, but decreased steroidogenesis. Thus, CDKN1B is an important regulator of LC development and function.

Collaboration


Dive into the Motoko Mukai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard E. Peterson

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shelley A. Tischkau

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge