Motoko Naitoh
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Motoko Naitoh.
Science Translational Medicine | 2012
Naohiro Egawa; Shiho Kitaoka; Kayoko Tsukita; Motoko Naitoh; Kazutoshi Takahashi; Takuya Yamamoto; Fumihiko Adachi; Takayuki Kondo; Keisuke Okita; Isao Asaka; Takashi Aoi; Akira Watanabe; Yasuhiro Yamada; Asuka Morizane; Jun Takahashi; Takashi Ayaki; Hidefumi Ito; Katsuhiro Yoshikawa; Satoko Yamawaki; Shigehiko Suzuki; Dai Watanabe; Hiroyuki Hioki; Takeshi Kaneko; Kouki Makioka; Koichi Okamoto; Hiroshi Takuma; Akira Tamaoka; Kazuko Hasegawa; Takashi Nonaka; Masato Hasegawa
Anacardic acid attenuates mutant TDP-43–associated abnormalities in motor neurons derived from ALS patient–specific induced pluripotent stem cells. A Stepping Stone to ALS Drug Screening Amyotrophic lateral sclerosis (ALS) is an untreatable disorder in which the motor neurons degenerate, resulting in paralysis and death. Induced pluripotent stem cell (iPSC) technology makes it possible to analyze motor neurons from patients with ALS and to use them for screening new candidate drugs. In new work, Egawa et al. obtained motor neurons by inducing differentiation of iPSC lines derived from several patients with familial ALS. These patients carried disease-causing mutations in the gene encoding Tar DNA binding protein-43 (TDP-43). The ALS motor neurons in culture recapitulated cellular and molecular abnormalities associated with ALS. For example, the authors found that mutant TDP-43 in the ALS motor neurons perturbed RNA metabolism and that the motor neurons were more vulnerable to cellular stressors such as arsenite. The researchers then used the ALS motor neurons in a drug screening assay and identified a compound called anacardic acid, a histone acetyltransferase inhibitor, that could reverse some of the ALS phenotypes observed in the motor neurons. The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss of motor neurons. Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.
Genes to Cells | 2004
Jun ichi Nozaki; Hiroshi Kubota; Hiderou Yoshida; Motoko Naitoh; Junko Goji; Takeo Yoshinaga; Kazutoshi Mori; Akio Koizumi; Kazuhiro Nagata
The dominant C96Y mutation of one of the two murine insulin genes, Ins2, causes diabetes mellitus in ‘Akita’ mice. Here we established pancreatic islet β cell lines from heterozygous mice (Ins2+/Akita). Western blot analysis of endoplasmic reticulum (ER) molecular chaperones indicated that Grp78, Grp94 and Orp150 are significantly increased in Ins2+/Akita cells compared with wild‐type (Ins2+/+) cells. Reporter gene assays using the human GRP78 promoter with or without the ER stress response element (ERSE) showed that Ins2+/Akita cells exhibit significantly stronger ERSE‐dependent transcriptional activity than Ins2+/+ cells. Transient over‐expression of the Ins2 C96Y mutant in wild‐type β cells induces a stronger ERSE‐dependent stress response than does wild‐type Ins2 over‐expression. The ERSE‐binding transcription factor ATF6 is strongly activated in Ins2+/Akita cells. The activity of a reporter containing the specific binding sequence of another ERSE‐binding transcription factor, XBP1, is also enhanced in Ins2+/Akita cells. Levels of active forms of XBP1 mRNA and protein are both markedly elevated in Ins2+/Akita cells. These results indicate that this cell line is subject to continuous ER stress and that the Ins2 C96Y mutation induces the expression of ER chaperones through the activation of ATF6 and XBP1.
American Journal of Hypertension | 2010
Shintaro Yasue; Hiroaki Masuzaki; Sadanori Okada; Takako T. Ishii; Chisayo Kozuka; Tomohiro Tanaka; Junji Fujikura; Ken Ebihara; Kiminori Hosoda; Akemi Katsurada; Naro Ohashi; Maki Urushihara; Hiroyuki Kobori; Naoki Morimoto; Takeshi Kawazoe; Motoko Naitoh; Mitsuru Okada; Hiroshi Sakaue; Shigehiko Suzuki; Kazuwa Nakao
BACKGROUND The adipose tissue renin-angiotensin system (RAS) has been implicated in the pathophysiology of obesity and dysfunction of adipose tissue. However, neither regulation of angiotensinogen (AGT) expression in adipose tissue nor secretion of adipose tissue-derived AGT has been fully elucidated in humans. METHODS Human subcutaneous abdominal adipose tissue (SAT) biopsies were performed for 46 subjects with a wide range of body mass index (BMI). Considering the mRNA level of AGT and indices of body fat mass, the amount of adipose tissue-derived AGT secretion (A-AGT-S) was estimated. Using a mouse model of obesity and weight reduction, plasma AGT levels were measured with a newly developed enzyme-linked immunosorbent assay (ELISA), and the contribution of A-AGT-S to plasma AGT levels was assessed. RESULTS A-AGT-S was substantially increased in obese humans and the value was correlated with the plasma AGT level in mice. A-AGT-S and plasma AGT were higher in obese mice, whereas lower in mice with weight reduction. However, the AGT mRNA levels in the liver, kidney, and aorta were not altered in the mouse models. In both humans and mice, the AGT mRNA levels in mature adipocytes (MAs) were comparable to those in stromal-vascular cells. Coulter Multisizer analyses revealed that AGT mRNA levels in the MAs were inversely correlated with the average size of mature adipocytes. CONCLUSIONS This study demonstrates that adipose tissue-derived AGT is substantially augmented in obese humans, which may contribute considerably to elevated levels of circulating AGT. Adipose tissue-specific regulation of AGT provides a novel insight into the clinical implications of adipose tissue RAS in human obesity.
Laboratory Investigation | 2006
Takeshi Togo; Atsushi Utani; Motoko Naitoh; Masayoshi Ohta; Yasumi Tsuji; Noriyuki Morikawa; Motonobu Nakamura; Shigehiko Suzuki
For cartilage reconstruction, it is still difficult to obtain a sufficient volume of cartilage and to maintain its functional phenotype for a long period. Utilizing tissue stem cells is one approach to overcome such difficulties. We show here the presence of cartilage progenitor cells in the ear perichondrium of adult rabbits by 5-bromo-2′-deoxyuridine labeling, clonogenicity, and differentiation analyses. Long-term label-retaining cells were demonstrated in the perichondrium. Cells from the perichondrium, that is, perichondrocytes were mechanically isolated using a raspatory and maintained in D-MEM/F-12 medium with 10% FCS. They proliferated more vigorously than chondrocytes from the cartilage. Perichondrocytes could differentiate into adipocytes as well as osteocytes in differentiation induction medium. For cartilage reconstruction in vivo, perichondrocytes were seeded on collagen sponge scaffolds and implanted in nude mice. After 4 weeks, the composites with perichondrocytes generated the same weight of cartilaginous tissue as those with chondrocytes. They produced glycosaminoglycan and type II collagen as shown by RT-PCR and immunohistochemical examination. On the contrary, rabbit bone marrow mesenchymal stem cells used as control could regenerate significantly smaller cartilage than perichondrocytes in the implant study. Based on these findings, we propose that the perichondrium containing tissue progenitor cells is one of the potential candidates for use in reconstructing cartilage and new therapeutic modalities.
Genes to Cells | 2005
Motoko Naitoh; Hiroshi Kubota; Mika Ikeda; Toshinori Tanaka; Hirofumi Shirane; Shigehiko Suzuki; Kazuhiro Nagata
Keloids are a dermal fibrotic disease whose etiology remains totally unknown and for which there is no successful treatment. Here, we employed cDNA microarray analysis to examine gene expression in keloid lesions and control skin. We found that 32 genes among the 9000 tested were strongly up‐regulated in keloid lesions, of which 21 were confirmed by Northern blotting. These included at least seven chondrocyte/osteoblast marker genes, and RT‐PCR analysis revealed that transcription factors specific for these genes, SOX9 and CBFA1, were induced. Immunostaining and in situ hybridization further supported that these markers are expressed in keloid lesions. Intriguingly, scleraxis, a transcription factor known as a marker of tendons and ligaments, was also induced in keloid fibroblasts. We propose that reprogramming of gene expression or disordered differentiation from a dermal pattern to that of a chondrocytic/osteogenic lineage, probably closer to that of tendon/ligament lineage, may be involved in the etiology of keloids.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Kazuo Noda; Branka Dabovic; Kyoko Takagi; Tadashi Inoue; Masahito Horiguchi; Maretoshi Hirai; Yusuke Fujikawa; Tomoya O. Akama; Kenji Kusumoto; Lior Zilberberg; Lynn Y. Sakai; Katri Koli; Motoko Naitoh; Harald von Melchner; Shigehiko Suzuki; Daniel B. Rifkin; Tomoyuki Nakamura
Elastic fiber assembly requires deposition of elastin monomers onto microfibrils, the mechanism of which is incompletely understood. Here we show that latent TGF-β binding protein 4 (LTBP-4) potentiates formation of elastic fibers through interacting with fibulin-5, a tropoelastin-binding protein necessary for elastogenesis. Decreased expression of LTBP-4 in human dermal fibroblast cells by siRNA treatment abolished the linear deposition of fibulin-5 and tropoelastin on microfibrils. It is notable that the addition of recombinant LTBP-4 to cell culture medium promoted elastin deposition on microfibrils without changing the expression of elastic fiber components. This elastogenic property of LTBP-4 is independent of bound TGF-β because TGF-β–free recombinant LTBP-4 was as potent an elastogenic inducer as TGF-β–bound recombinant LTBP-4. Without LTBP-4, fibulin-5 and tropoelastin deposition was discontinuous and punctate in vitro and in vivo. These data suggest a unique function for LTBP-4 during elastic fibrogenesis, making it a potential therapeutic target for elastic fiber regeneration.
Biochemical and Biophysical Research Communications | 2003
Shin-ichi Yokota; Hiroshi Kubota; Yasuhiro Matsuoka; Motoko Naitoh; Daisuke Hirata; Seiji Minota; Hiroki Takahashi; Nobuhiro Fujii; Kazuhiro Nagata
The 47-kDa heat shock protein (HSP47) is an endoplasmic reticulum molecular chaperone that assists in the maturation of collagen molecules and whose expression is known to be upregulated in lesions of fibrotic diseases. We examined the levels of HSP47 protein and autoantibodies to HSP47 in the sera of patients with rheumatic autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögrens syndrome, and mixed connective tissue disease (MCTD) by enzyme-linked immunosorbent assay and immunoblot analysis. Patients with idiopathic pulmonary fibrosis (IPF) were assessed as an example of non-autoimmune fibrotic disease. HSP47 antigen and autoantibody levels are significantly elevated in the sera of the rheumatic autoimmune disease patients, but not in the sera of the IPF patients. The sera of the MCTD patients showed particularly high levels of HSP47 antigen relative to healthy controls (1.99+/-0.22 vs 0.41+/-0.07 ng/ml). Autoantibodies to HSP47 were also in high levels in the sera of MCTD patients. These results suggest that simultaneous occurrence of systemic inflammation and upregulation of HSP47 caused leakage of HSP47 from fibrotic lesions into the peripheral blood, and the leaked antigen induced high titer of autoantibodies to HSP47. The high levels of HSP47 antigen and autoantibody may be useful blood markers of MCTD.
Biochemical and Biophysical Research Communications | 2009
Mika Ikeda; Motoko Naitoh; Hiroshi Kubota; Toshihiro Ishiko; Katsuhiro Yoshikawa; Satoko Yamawaki; Masato Kurokawa; Atsushi Utani; Tomoyuki Nakamura; Kazuhiro Nagata; Shigehiko Suzuki
Keloid is a fibrotic disease characterized by abnormal accumulation of extracellular matrix in the dermis. The keloid matrix contains excess collagen and glycosaminoglycans (GAGs), but lacks elastic fiber. However, the roles of these matrix components in the pathogenesis of keloid are largely unknown. Here, we show that elastin and DANCE (also known as fibulin-5), a protein required for elastic fiber formation, are not deposited in the extracellular matrix of keloids, due to excess accumulation of chondoitin sulfate (CS), although the expression of elastin and DANCE is not affected. Amount of CS accumulated in the keloid legion was 6.9-fold higher than in normal skin. Fibrillin-1, a scaffold protein for elastic fiber assembly, was abnormally distributed in the keloid matrix. Addition of purified CS to keloid fibroblast culture resulted in abnormal deposition of fibrillin-1, concomitant with significantly decreased accumulation of elastin and DANCE in the extracellular matrix. We propose that CS plays a crucial role in the development of keloid lesions through inhibition of elastic fiber assembly.
Biological Chemistry | 2005
Takeo Yoshinaga; Keisuke Nakatome; Jun-ichi Nozaki; Motoko Naitoh; Hiroshi Kubota; Kazuhiro Nagata; Akio Koizumi
Abstract A single mutation (C96Y) in the Ins2 gene, which disrupts the A7-B7 disulfide bond, causes the diabetic phenotype in Akita mice. We biochemically analyzed the conformation of wild-type and Akita mutant recombinant proinsulins. Gel filtration chromatography and dynamic light scattering revealed that the apparent size of the mutant proinsulin molecules was significantly larger than that of wild-type proinsulin, even in the absence of intermolecular disulfide bonds. Titration with a hydrophobic probe, 1-anilinonaphthalene-8-sulfonate, demonstrated that the mutant proinsulin was more hydrophobic than the wild type. In addition, circular dichroism studies revealed that the conformation of the mutant proinsulin was less stable than the wild type, which is consistent with the observation that hydrophobic residues are exposed on the surface of the proinsulin molecules. Studies with antiserum against the C-peptide of proinsulin indicated that the mutant proinsulin had an immunoreactivity that was at least one-tenth weaker than wild-type proinsulin, suggesting that the C-peptide of mutant proinsulin is buried inside the aggregate of the proinsulin molecule. These findings indicate that increased hydrophobicity of mutant proinsulin facilitates aggregate formation, providing a clue to the dominant negative effect in the Akita mouse.
Journal of Investigative Dermatology | 2013
Yosuke Yagi; Eri Muroga; Motoko Naitoh; Zenzo Isogai; Seiya Matsui; Susumu Ikehara; Shigehiko Suzuki; Yoshiki Miyachi; Atsushi Utani
The most distinctive feature of keloid is the extreme deposition of extracellular matrix, including collagens and proteoglycans (PGs). The focus of this study was the PG versican, which presumably defines keloid volume because of its ability to retain large amounts of water through its component glycosaminoglycans (GAGs). The excessive deposition of versican in keloids was examined by immunohistochemical analysis and by upregulation of the versican gene in these lesions by real-time PCR. The latter showed that mesenchymal cells derived from keloid lesion (KL) cells continue to exhibit above-normal versican production in culture. To establish a model of GAG deposition in keloids, collagen sponges seeded with KL cells (KL-SPos) were implanted in the subcutaneous space of nude mice. After 1 month, the KL-SPos were significantly heavier than the fibroblast (Fb)-seeded sponges (Fb-SPos). This ex vivo model was subsequently used to examine an inhibitory ability of IL-1β that was identified to reduce versican in vitro. IL-1β or chondroitinase ABC, when injected directly, successfully reduced the weight of the KL-SPos. Thus, on the basis of the change in weight of the seeded sponges, this ex vivo model can be used to test therapies aimed at reducing or inhibiting keloid formation and to study the pathogenesis of this aberrant response.