Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoko Unoki is active.

Publication


Featured researches published by Motoko Unoki.


International Journal of Cancer | 2011

Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers

Shinya Hayami; John D. Kelly; Hyun Soo Cho; Masanori Yoshimatsu; Motoko Unoki; Tatsuhiko Tsunoda; Helen I. Field; David E. Neal; Hiroki Yamaue; Bruce A.J. Ponder; Yusuke Nakamura; Ryuji Hamamoto

A number of histone demethylases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human disease like cancer have not been well understood. Here, we demonstrate important roles of lysine‐specific demethylase 1 (LSD1) in human carcinogenesis. Expression levels of LSD1 are significantly elevated in human bladder carcinomas compared with nonneoplastic bladder tissues (p < 0.0001). cDNA microarray analysis also revealed its transactivation in lung and colorectal carcinomas. LSD1‐specific small interfering RNAs significantly knocked down its expression and resulted in suppression of proliferation of various bladder and lung cancer cell lines. Concordantly, introduction of exogenous LSD1 expression promoted cell cycle progression of human embryonic kidney fibroblast cells. Expression profile analysis showed that LSD1 could affect the expression of genes involved in various chromatin‐modifying pathways such as chromatin remodeling at centromere, centromeric heterochromatin formation and chromatin assembly, indicating its essential roles in carcinogenesis through chromatin modification.


Oncogene | 2001

Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway.

Motoko Unoki; Yusuke Nakamura

Defects in PTEN, a tumor suppressor, have been found in cancers arising in a variety of human tissues. To elucidate the tumor-suppressive function of this gene, we have been analysing expression profiles of cancer cells after introduction of exogenous PTEN. Those experiments identified 99 candidate genes that were transcriptionally transactivated. Among them, we report here the further analyses of eight genes, EGR2/Krox-20, BPOZ, APS, HCLS1/HS1, DUSP1/MKP1, NDRG1/Drg1/RTP, NFIL3/E4BP4, and a novel gene (PINK1, PTEN-induced putative kinase). Expression of six of them (PINK1, EGR2, HCLS1, DUSP1, BPOZ, and NFIL3) was decreased in ovarian tumors compared with corresponding normal tissues. Colony-formation assays using plasmid clones designed to express each gene indicated that EGR2 and BPOZ were able to suppress growth of cancer cells significantly; in particular, cancer-cell lines stably expressing BPOZ grew more slowly than control cells containing mock vector. Flow cytometry suggested that over-expression of BPOZ inhibited progression of the cell cycle at the G1/S transition. Anti-sense oligonucleotides for BPOZ or EGR2 effectively inhibited their expression, and cell growth was accelerated. Therefore both genes appear to be novel candidates as mediators of the PTEN growth-suppressive signaling pathway.


Oncogene | 2004

ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain

Motoko Unoki; Toshihiko Nishidate; Yusuke Nakamura

ICBP90, inverted CCAAT box-binding protein of 90 kDa, has been reported as a regulator of topoisomerase IIα expression. We present evidence here that ICBP90 binds to methyl-CpG when at least one symmetrically methylated-CpG dinucleotides is presented as its recognition sequence. A SET and RING finger-associated (SRA) domain accounts for the high binding affinity of ICBP90 for methyl-CpG dinucleotides. This protein constitutes a complex with HDAC1 also via its SRA domain, and bound to methylated promoter regions of various tumor suppressor genes, including p16INK4Aand p14ARF, in cancer cells. It has been reported that expression of ICBP90 was upregulated by E2F-1, and we confirmed that the upregulation was caused by binding of E2F-1 to the intron1 of ICBP90, which contains two E2F-1-binding motifs. Our data also revealed accumulation of ICBP90 in breast-cancer cells, where it might suppress expression of tumor suppressor genes through deacetylation of histones after recruitment of HDAC1. The data reported here suggest that ICBP90 is involved in cell proliferation by way of methylation-mediated regulation of certain genes.


International Journal of Cancer | 2011

Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers

Masanori Yoshimatsu; Gouji Toyokawa; Shinya Hayami; Motoko Unoki; Tatsuhiko Tsunoda; Helen I. Field; John D. Kelly; David E. Neal; Yoshihiko Maehara; Bruce A.J. Ponder; Yusuke Nakamura; Ryuji Hamamoto

Protein arginine methylation is a novel post‐translational modification regulating a diversity of cellular processes, including histone functions, but the roles of protein arginine methyltransferases (PRMTs) in human cancer are not well investigated. To address this issue, we first examined expression levels of genes belonging to the PRMT family and found significantly higher expression of PRMT1 and PRMT6, both of which are Type I PRMTs, in cancer cells of various tissues than in non‐neoplastic cells. Abrogation of the expression of these genes with specific siRNAs significantly suppressed growth of bladder and lung cancer cells. Expression profile analysis using the cells transfected with the siRNAs indicated that PRMT1 and PRMT6 interplay in multiple pathways, supporting regulatory roles in the cell cycle, RNA processing and also DNA replication that are fundamentally important for cancer cell proliferation. Furthermore, we demonstrated that serum asymmetric dimethylarginine (ADMA) levels of a number of cancer cases are significantly higher than those of nontumor control cases. In summary, our results suggest that dysregulation of PRMT1 and PRMT6 can be involved in human carcinogenesis and that these Type I arginine methyltransferases are good therapeutic targets for various types of cancer.


Molecular Cancer | 2010

Overexpression of the JmjC histone demethylase KDM5B in human carcinogenesis: involvement in the proliferation of cancer cells through the E2F/RB pathway

Shinya Hayami; Masanori Yoshimatsu; Abhimanyu Veerakumarasivam; Motoko Unoki; Yukiko Iwai; Tatsuhiko Tsunoda; Helen I. Field; John D. Kelly; David E. Neal; Hiroki Yamaue; Bruce A.J. Ponder; Yusuke Nakamura; Ryuji Hamamoto

BackgroundAlthough an increasing number of histone demethylases have been identified and biochemically characterized, their biological functions largely remain uncharacterized, particularly in the context of human diseases such as cancer. We investigated the role of KDM5B, a JmjC histone demethylase, in human carcinogenesis. Quantitative RT-PCR and microarray analyses were used to examine the expression profiles of histone demethylases in clinical tissue samples. We also examined the functional effects of KDM5B on the growth of cancer cell lines treated with small interfering RNAs (siRNAs). Downstream genes and signal cascades induced by KDM5B expression were identified from Affymetrix Gene Chip experiments, and validated by real-time PCR and reporter assays. Cell cycle-dependent characteristics of KDM5B were identified by immunofluorescence and FACS.ResultsQuantitative RT-PCR analysis confirmed that expression levels of KDM5B are significantly higher in human bladder cancer tissues than in their corresponding non-neoplastic bladder tissues (P < 0.0001). The expression profile analysis of clinical tissues also revealed up-regulation of KDM5B in various kinds of malignancies. Transfection of KDM5B-specific siRNA into various bladder and lung cancer cell lines significantly suppressed the proliferation of cancer cells and increased the number of cells in sub-G1 phase. Microarray expression analysis indicated that E2F1 and E2F2 are downstream genes in the KDM5B pathway.ConclusionsInhibition of KDM5B may affect apoptosis and reduce growth of cancer cells. Further studies will explore the pan-cancer therapeutic potential of KDM5B inhibition.


Cancer Research | 2011

Demethylation of RB regulator MYPT1 by histone demethylase LSD1 promotes cell cycle progression in cancer cells.

Hyun Soo Cho; Takehiro Suzuki; Naoshi Dohmae; Shinya Hayami; Motoko Unoki; Masanori Yoshimatsu; Gouji Toyokawa; Masashi Takawa; Taiping Chen; Julia K. Kurash; Helen I. Field; Bruce A.J. Ponder; Yusuke Nakamura; Ryuji Hamamoto

Histone demethylase LSD1 (also known as KDM1 and AOF2) is active in various cancer cells, but its biological significance in human carcinogenesis is unexplored. In this study, we explored hypothesized interactions between LSD1 and MYPT1, a known regulator of RB1 phosphorylation. We found that MYPT1 was methylated in vitro and in vivo by histone lysine methyltransferase SETD7 and demethylated by LSD1, identifying Lys 442 of MYPT1 as a target for methylation/demethylation by these enzymes. LSD1 silencing increased MYPT1 protein levels, decreasing the steady state level of phosphorylated RB1 (Ser 807/811) and reducing E2F activity. MYPT1 methylation status influenced the affinity of MYPT1 for the ubiquitin-proteasome pathway of protein turnover. MYPT1 was unstable in murine cells deficient in SETD7, supporting the concept that MYPT1 protein stability is physiologically regulated by methylation status. LSD1 overexpression could activate RB1 phosphorylation by inducing a destabilization of MYPT1 protein. Taken together, our results comprise a novel cell cycle regulatory mechanism mediated by methylation/demethylation dynamics, and they reveal the significance of LSD1 overexpression in human carcinogenesis.


Cancer Research | 2007

Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1.

Jiang Cheng Shen; Motoko Unoki; Damien Ythier; Alain Duperray; Lyuba Varticovski; Kensuke Kumamoto; Rémy Pedeux; Curtis C. Harris

Inhibitor of growth 4 (ING4) is a candidate tumor suppressor that plays a major role in gene regulation, cell cycle control, apoptosis, and angiogenesis. ING4 expression is down-regulated in glioblastoma cells and head and neck squamous cell carcinoma. Here, we identified liprin alpha1/PPFIA1, a cytoplasmic protein necessary for focal adhesion formation and axon guidance, as a novel interacting protein with ING4. ING4 and liprin alpha1 colocalized at lamellipodia in the vicinity of vinculin. Overexpressed ING4 suppressed cell spreading and cell migration. In contrast, overexpressed liprin alpha1 enhanced cell spreading and cell migration. Knockdown of endogenous ING4 with RNA interference induced cell motility, whereas knockdown of endogenous liprin alpha1 suppressed cell motility. ING4 also suppressed cell motility that was enhanced by liprin alpha1. However, ING4 did not further suppress cell motility when liprin alpha1 was suppressed with RNA interference, suggesting a functional and mechanistic interdependence between these proteins. In addition to its nuclear functions, cytoplasmic ING4 interacts with liprin alpha1 to regulate cell migration and, with its known antiangiogenic function, may prevent invasion and metastasis.


American Journal of Human Genetics | 2001

Association between a Single-Nucleotide Polymorphism in the Promoter of the Human Interleukin-3 Gene and Rheumatoid Arthritis in Japanese Patients, and Maximum-Likelihood Estimation of Combinatorial Effect That Two Genetic Loci Have on Susceptibility to the Disease

Ryo Yamada; Toshihiro Tanaka; Motoko Unoki; Tatsuo Nagai; Tetsuji Sawada; Yozo Ohnishi; Tatsuhiko Tsunoda; Masao Yukioka; Akira Maeda; Kenji Suzuki; Hiroomi Tateishi; Takahiro Ochi; Yusuke Nakamura; Kazuhiko Yamamoto

Genetic variants of interleukin-3 (IL-3), a well-studied cytokine, may have a role in the pathophysiology of rheumatoid arthritis (RA); but reports on this association sometimes conflict. A case-control study was designed to investigate association between RA and a single-nucleotide polymorphism (SNP) in the IL-3 promoter region. Comparison of cases of RA versus control individuals yielded a chi(2) value of 14.28 (P=.0002), with a genotype odds ratio of 2.24 (95% confidence interval [95%CI] 1.44-3.49). When female cases with earlier onset were compared with female control individuals, the SNP revealed an even more significant correlation, with chi2=21.75 (P=.000004) and a genotype odds ratio of 7.27 (95%CI 2.80-18.89). The stronger association that we observed in this clinically distinct subgroup (females with early onset), within a region where linkage disequilibrium was not significantly extended, suggested that the genuine RA locus should locate either within or close to the IL-3 gene. Combined genotype data on SNPs on eight other candidate genes were combined with our IL-3 results, to estimate relationships between pairs of loci and RA, by maximum-likelihood analysis. The utility of combining the genotype data in this way to identify possible contributions of various genes to this disease is discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1

Kyohei Arita; Shin Isogai; Takashi Oda; Motoko Unoki; Kazuya Sugita; Naotaka Sekiyama; Keiko Kuwata; Ryuji Hamamoto; Hidehito Tochio; Mamoru Sato; Mariko Ariyoshi; Masahiro Shirakawa

Multiple covalent modifications on a histone tail are often recognized by linked histone reader modules. UHRF1 [ubiquitin-like, containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1], an essential factor for maintenance of DNA methylation, contains linked two-histone reader modules, a tandem Tudor domain and a PHD finger, tethered by a 17-aa linker, and has been implicated to link histone modifications and DNA methylation. Here, we present the crystal structure of the linked histone reader modules of UHRF1 in complex with the amino-terminal tail of histone H3. Our structural and biochemical data provide the basis for combinatorial readout of unmodified Arg-2 (H3-R2) and methylated Lys-9 (H3-K9) by the tandem tudor domain and the PHD finger. The structure reveals that the intermodule linker plays an essential role in the formation of a histone H3–binding hole between the reader modules by making extended contacts with the tandem tudor domain. The histone H3 tail fits into the hole by adopting a compact fold harboring a central helix, which allows both of the reader modules to simultaneously recognize the modification states at H3-R2 and H3-K9. Our data also suggest that phosphorylation of a linker residue can modulate the relative position of the reader modules, thereby altering the histone H3–binding mode. This finding implies that the linker region plays a role as a functional switch of UHRF1 involved in multiple regulatory pathways such as maintenance of DNA methylation and transcriptional repression.


Journal of Biological Chemistry | 2006

Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility

Motoko Unoki; Jiang Cheng Shen; Zhi-Ming Zheng; Curtis C. Harris

The ING4 gene is a candidate tumor suppressor gene that functions in cell proliferation, contact inhibition, and angiogenesis. We identified three novel splice variants of ING4 with differing activities in controlling cell proliferation, cell spreading, and cell migration. ING4_v1 (the longest splice variant), originally identified as ING4, encodes an intact nuclear localization signal (NLS), whereas the other three splice variants (ING4_v2, ING4_v3, and ING4_v4) lack the full NLS, resulting in increased cytoplasmic localization of these proteins. We found that one of the three ING4 variants, ING4_v2, is expressed at the same level as the original ING4 (ING4_v1), suggesting that ING4 variants may have significant biological functions. Growth suppressive effects of the variants that have a partial NLS (ING4_v2 and ING4_v4) were attenuated by a weaker effect of the variants on p21WAF1 promoter activation. ING4_v4 lost cell spreading and migration suppressive effects; on the other hand, ING4_v2 retained a cell migration suppressive effect but lost a cell spreading suppressive effect. Therefore, ING4_v2, which localized primarily into cytoplasm, might have an important role in the regulation of cell migration. We also found that ING4_v4 played dominant-negative roles in the induction of p21WAF1 promoter activation and in the suppression of cell motility by ING4_v1. In addition, ING4 variants had different binding affinities to two cytoplasmic proteins, protein-tyrosine phosphatase, receptor type, f polypeptide (PTPRF), interacting protein (liprin), α1, and G3BP2a. Understanding the functions of the four splice variants may aid in defining their roles in human carcinogenesis.

Collaboration


Dive into the Motoko Unoki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Curtis C. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuhiko Tsunoda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Jiang Cheng Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge