Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motonori Takahashi is active.

Publication


Featured researches published by Motonori Takahashi.


Circulation | 2005

Possible Role of Brain-Derived Neurotrophic Factor in the Pathogenesis of Coronary Artery Disease

Junya Ejiri; Nobutaka Inoue; Seiichi Kobayashi; Rio Shiraki; Kazunori Otsui; Tomoyuki Honjo; Motonori Takahashi; Yoshitaka Ohashi; Shinobu Ichikawa; Mitsuyasu Terashima; Takao Mori; Kojiro Awano; Toshiro Shinke; Junya Shite; Ken-ichi Hirata; Hiroshi Yokozaki; Seinosuke Kawashima; Mitsuhiro Yokoyama

Background— The neurotrophin (NT) family, including nerve growth factor NT-3 and brain-derived neurotrophic factor (BDNF), has a critical role in the survival, growth, maintenance, and death of central and peripheral neurons. NTs and their receptors are expressed in atherosclerotic lesions; however, their significance in cardiovascular disease remains unclear. Methods and Results— To clarify the role of NTs in the pathogenesis of coronary artery disease, NT plasma levels in the aorta, coronary sinus, and peripheral veins of patients with unstable angina (n=38), stable effort angina (n=45), and non–coronary artery disease (n=24) were examined. In addition, regional expression of BDNF in coronary arteries was examined in autopsy cases and patients with angina pectoris by directional coronary atherectomy. The difference in BDNF levels, but not NT-3, between the coronary sinus and aorta was significantly greater in the unstable angina group compared with the stable effort angina and non–coronary artery disease groups. Immunohistochemical investigations demonstrated BDNF expression in the atheromatous intima and adventitia in atherosclerotic coronary arteries. BDNF expression was enhanced in macrophages and smooth muscle cells in atherosclerotic coronary arteries. Stimulation with recombinant BDNF significantly enhanced NAD(P)H oxidase activity and the generation of reactive oxygen species in cultured human coronary artery smooth muscle cells. Conclusions— BDNF has an important role in atherogenesis and plaque instability via the activation of NAD(P)H oxidase.


Circulation Research | 2010

Role of Afadin in Vascular Endothelial Growth Factor– and Sphingosine 1-Phosphate–Induced Angiogenesis

Hideto Tawa; Yoshiyuki Rikitake; Motonori Takahashi; Hisayuki Amano; Muneaki Miyata; Seimi Satomi-Kobayashi; Mitsuo Kinugasa; Yuichi Nagamatsu; Takashi Majima; Hisakazu Ogita; Jun Miyoshi; Ken-ichi Hirata; Yoshimi Takai

Rationale: Angiogenesis contributes to physiological and pathological conditions, including atherosclerosis. The Rap1 small G protein regulates vascular integrity and angiogenesis. However, little is known about the effectors of Rap1 involved in angiogenesis. It is not known whether afadin, an adherens junction protein that connects immunoglobulin-like adhesion molecule nectins to the actin cytoskeleton and binds activated Rap1, plays a role in angiogenesis. Objective: We investigated the role of endothelial afadin in angiogenesis and attempted to clarify the underlying molecular mechanism. Methods and Results: Treatment of human umbilical vein endothelial cells (HUVECs) with vascular endothelial growth factor (VEGF) and sphingosine 1-phosphate (S1P) induced the activation of Rap1. Activated Rap1 regulated intracellular localization of afadin. Knockdown of Rap1 or afadin by small interfering RNA inhibited the VEGF- and S1P-induced capillary-like network formation, migration, and proliferation, and increased the serum deprivation-induced apoptosis of HUVECs. Knockdown of Rap1 or afadin decreased the accumulation of adherens and tight junction proteins to the cell–cell contact sites. Rap1 regulated the interaction between afadin and phosphatidylinositol 3-kinase (PI3K), recruitment of the afadin–PI3K complex to the leading edge, and the activation of Akt, indicating the involvement of Rap1 and afadin in the PI3K–Akt signaling pathway. Binding of afadin to Rap1 regulated the activity of Rap1 in a positive-feedback manner. In vivo, conditional deletion of afadin in mouse vascular endothelium using a Cre-loxP system impaired the VEGF- and S1P-induced angiogenesis. Conclusions: These results demonstrate a novel molecular mechanism by which Rap1 and afadin regulate the VEGF- and S1P-induced angiogenesis.


Heart and Vessels | 2007

Enhanced expression of TLR4 in smooth muscle cells in human atherosclerotic coronary arteries

Kazunori Otsui; Nobutaka Inoue; Seiichi Kobayashi; Rio Shiraki; Tomoyuki Honjo; Motonori Takahashi; Ken-ichi Hirata; Seinosuke Kawashima; Mitsuhiro Yokoyama

Toll-like receptors (TLRs) play an essential role in innate immunity as components of the primary defense system against microbial infections. It has become evident that TLRs are also involved in the pathogenesis of various cardiovascular diseases. However, the expression patterns of TLRs in the human coronary arteries of coronary artery disease (CAD) patients and the regulatory mechanisms of their expression remain unknown. The TLR4 expression patterns were invstigated by immunohistochemical analysis of coronary specimens obtained from autopsy cases or CAD patients by using directional coronary atherectomy. In atherosclerotic coronary arteries (n = 8), TLR4 immunoreactivity was colocalized with infiltrating inflammatory cells. Interestingly, vascular smooth muscle cells of atherosclerotic coronary arteries intensely expressed TLR4 even in the regions that had few inflammatory cells. In contrast, TLR4 expression was barely detected in the vascular smooth muscle cells of nonatherosclerotic coronary arteries (n = 4). Furthermore, intense expression of smooth muscle TLR4 was observed in the coronary arteries of CAD patients (n = 52). Stimulation with tumor necrosis factor α and angiotensin II increased the expression of TLR4 mRNA in cultured human vascular smooth muscle cells. Candesartan, an antagonist of the angiotensin II type 1 receptor (AT1), and N-acetylcystine inhibited angiotensin II-induced TLR4 mRNA expression in these cells. These findings suggest that the vascular smooth muscle cells of atherosclerotic coronary arteries may be activated to express TLR4. Furthermore, proinflammatory cytokines and oxidative stress in the inflammatory lesions might contribute to the enhanced expression of TLR4 in vascular smooth muscle cells of atherosclerotic arteries.


Journal of Vascular Research | 2006

Endothelial Urocortin Has Potent Antioxidative Properties and Is Upregulated by Inflammatory Cytokines and Pitavastatin

Tomoyuki Honjo; Nobutaka Inoue; Rio Shiraki; Seiichi Kobayashi; Kazunori Otsui; Motonori Takahashi; Ken-ichi Hirata; Seinosuke Kawashima; Hiroshi Yokozaki; Mitsuhiro Yokoyama

Background: Urocortin, a neuropeptide discovered in the midbrain, is a member of the corticotropin-releasing factor family and is expressed in heart tissues. Urocortin exerts potent cardioprotective effects under various pathological conditions including ischemia/reperfusion. However, the regulation and function of vascular urocortin are unknown. Methods and Results: Immunohistochemistry showed definitive expression of urocortin in endothelial cells of coronary large arteries and microvessels from autopsied hearts. RT-PCR confirmed the expression of urocortin in human umbilical vein endothelial cells (HUVECs). Urocortin (10–8M) potently suppressed the generation of angiotensin II-induced reactive oxygen species (ROS) in HUVECs. Tumor necrosis factor-α and interferon-γ increased the urocortin mRNA levels and its release from HUVECs. Incubation with pitavastatin (0.1–3.0 µM) significantly increased the urocortin mRNA levels and its release from HUVECs. Furthermore, treatment with pitavastatin (2 mg/day) for 4 weeks increased the serum urocortin level from 11.0 ± 6.5 to 16.4 ± 7.3 ng/ml in healthy volunteers. Conclusion: Endothelial urocortin was upregulated by inflammatory cytokines and pitavastatin and suppressed ROS production in endothelial cells. Treatment with pitavastatin increased the serum urocortin level in human subjects. Thus, endothelial urocortin might protect cardiomyocytes in inflammatory lesions. Urocortin might partly explain the mechanisms of various pleiotropic effects of statins.


Genes to Cells | 2008

Sequential activation of Rap1 and Rac1 small G proteins by PDGF locally at leading edges of NIH3T3 cells

Motonori Takahashi; Yoshiyuki Rikitake; Yuichi Nagamatsu; Tetsuya Hara; Wataru Ikeda; Ken-ichi Hirata; Yoshimi Takai

Moving cells form protrusions, such as filopodia and lamellipodia, and focal complexes at leading edges, which eventually enhance cell movement. The Rho family small G proteins, Rac1, Cdc42 and RhoA, are involved in the formation of these leading edge structures. We investigated the role of another small G protein Rap1 in the platelet‐derived growth factor (PDGF)‐induced formation of leading edge structures and cell movement. Upon stimulation of NIH3T3 cells by PDGF, leading edge structures were formed and Necl‐5, integrin αVβ3, and PDGF receptor were accumulated at leading edges. Rap1, upstream regulators of Rap1 such as Crk and C3G, and a downstream effector RalGDS, were accumulated at peripheral ruffles over lamellipodia. Over‐expression of Rap1GAP, which inactivates Rap1, and knockdown of Rap1 inhibited the PDGF‐induced formation of leading edge structures, accumulation of these molecules, and cell movement. In addition, Rap1 activation subsequently induced accumulation of Rac1, Vav2 and PAK at peripheral ruffles, which was inhibited by Rap1GAP and knockdown of Rap1. These results indicate that Rap1, activated by PDGF, is recruited to leading edges and that Rac1 is thereby activated locally at peripheral ruffles. This process is pivotal for the PDGF‐induced formation of leading edge structures and cell movement.


Journal of Biological Chemistry | 2009

Regulation by afadin of cyclical activation and inactivation of Rap1, Rac1, and RhoA small G proteins at leading edges of moving NIH3T3 cells.

Muneaki Miyata; Yoshiyuki Rikitake; Motonori Takahashi; Yuichi Nagamatsu; Yusuke Yamauchi; Hisakazu Ogita; Ken-ichi Hirata; Yoshimi Takai

Cyclical activation and inactivation of Rho family small G proteins, such as Rho, Rac, and Cdc42, are needed for moving cells to form leading edge structures in response to chemoattractants. However, the mechanisms underlying the dynamic regulation of their activities are not fully understood. We recently showed that another small G protein, Rap1, plays a crucial role in the platelet-derived growth factor (PDGF)-induced formation of leading edge structures and activation of Rac1 in NIH3T3 cells. We showed here that knockdown of afadin, an actin-binding protein, in NIH3T3 cells resulted in a failure to develop leading edge structures in association with an impairment of the activation of Rap1 and Rac1 and inactivation of RhoA in response to PDGF. Overexpression of a constitutively active mutant of Rap1 (Rap1-CA) and knockdown of SPA-1, a Rap1 GTPase-activating protein that was negatively regulated by afadin by virtue of binding to it, in afadin-knockdown NIH3T3 cells restored the formation of leading edge structures and the reduction of the PDGF-induced activation of Rac1 and inactivation of RhoA, suggesting that the inactivation of Rap1 by SPA-1 is responsible for inhibition of the formation of leading edge structures. The effect of Rap1-CA on the restoration of the formation of leading edge structures and RhoA inactivation was diminished by additional knockdown of ARAP1, a Rap-activated Rho GAP, which localized at the leading edges of moving NIH3T3 cells. These results indicate that afadin regulates the cyclical activation and inactivation of Rap1, Rac1, and RhoA through SPA-1 and ARAP1.


Journal of Biological Chemistry | 2008

Roles of Necl-5/Poliovirus Receptor and Rho-associated Kinase (ROCK) in the Regulation of Transformation of Integrin αVβ3-based Focal Complexes into Focal Adhesions

Yuichi Nagamatsu; Yoshiyuki Rikitake; Motonori Takahashi; Yuko Deki; Wataru Ikeda; Ken-ichi Hirata; Yoshimi Takai

Focal complexes are continuously formed and transformed into focal adhesions during cell movement. We previously demonstrated that Necl-5 co-localizes with integrin αVβ3 at focal complexes, whereas Necl-5 does not localize at focal adhesions in moving NIH3T3 cells, suggesting that Necl-5 may be dissociated from integrin αVβ3 during the transformation of focal complexes into focal adhesions, but the underlying mechanism remains unknown. Here, we explore the roles of Necl-5 and Rho-associated kinase (ROCK) in the regulation of the transformation of focal complexes into focal adhesions. We found that inhibition of Necl-5 expression and expression of a constitutively active mutant of ROCK1 enhanced, whereas treatment with a ROCK inhibitor Y-27632 inhibited the transformation of focal complexes into focal adhesions. In HEK293 cells ectopically expressing Necl-5 and integrin αVβ3, treatment of cells with Y-27632 increased the binding of Necl-5 to clustered integrin αVβ3. The experiments using inhibitors of myosin ATPase and actin polymerization revealed that actomyosin-driven contractility exerts a similar function as ROCK. The phosphorylation of integrin β3 at Tyr747, which is known to be critical for the formation of focal adhesions, plays a pivotal role for the interaction between Necl-5 and integrin αVβ3. These results indicate that the transformation of focal complexes into focal adhesions is negatively and positively regulated by Necl-5 and ROCK, respectively, and that ROCK-dependent actomyosin-driven contractility is a critical determinant for the regulation of the interaction between Necl-5 and integrin αVβ3.


Scientific Reports | 2017

Aberrant telomere length and mitochondrial DNA copy number in suicide completers

Ikuo Otsuka; Takeshi Izumi; Shuken Boku; Atsushi Kimura; Yuan Zhang; Kentaro Mouri; Satoshi Okazaki; Kyoichi Shiroiwa; Motonori Takahashi; Yasuhiro Ueno; Osamu Shirakawa; Ichiro Sora; Akitoyo Hishimoto

Short telomere length (TL) occurs in individuals under psychological stress, and with various psychiatric diseases. Recent studies have also reported mitochondrial DNA copy number (mtDNAcn) alterations under several neuropsychiatric conditions. However, no study has examined whether aberrant TL or mtDNAcn occur in completed suicide, one of the most serious outcomes of mental illnesses. TL and mtDNAcn in post-mortem samples from 528 suicide completers without severe physical illness (508 peripheral bloods; 20 brains) and 560 samples from control subjects (peripheral bloods from 535 healthy individuals; 25 post-mortem brains) were analysed by quantitative polymerase chain reaction. Suicide completers had significantly shorter TL and higher mtDNAcn of peripheral bloods with sex/age-dependent differences (shorter TL was more remarkably in female/young suicides; higher mtDNAcn more so in male/elderly suicides). The normal age-related decline of TL and mtDNAcn were significantly altered in suicide completers. Furthermore, shorter TL and lower mtDNAcn of post-mortem prefrontal cortex were seen in suicide completers compared to controls. This study shows the first association of aberrant telomeres and mtDNA content with suicide completion. Our results indicate that further research on telomere shortening and mitochondrial dysfunction may help elucidate the molecular underpinnings of suicide-related pathophysiology.


International Journal of Legal Medicine | 2013

Estimates of exposure to cold before death from immunohistochemical expression patterns of HSP70 in glomerular podocytes

Makoto Sakurada; Migiwa Asano; Motonori Takahashi; Azumi Kuse; Mai Morichika; Kanako Nakagawa; Takeshi Kondo; Yasuhiro Ueno

Environmental factors such as outside temperature at the time of death are very important for forensic diagnoses and police investigations. In particular, death in a cold environment is associated with factors of forensic interest, including hypothermia, drowning in cold water, or postmortem body movement by a suspect. Hypothermia raises a special problem because of the difficulty of evaluation during autopsy. We describe here a unique method of estimating antemortem environmental temperature, involving the immunohistochemical analysis of HSP70 expression patterns in glomerular podocytes. Using this method, we found that HSP70 was present in glomerular podocytes at autopsy and that HSP70 was highly expressed, mainly in the nucleus of podocytes, in deaths associated with exposure to cold. Interestingly, this expression pattern was specific to death in a cold environment, including hypothermia and drowning in cold water. Analysis of the pattern of HSP70 expression in glomeruli may therefore be very useful in forensic diagnosis, for determining whether the antemortem environmental temperature was low. Moreover, immunohistochemical and real-time PCR assays of the molecular mechanism of HSP70 and HSF1 expression in glomeruli following exposure to cold indicated that HSP70 was rapidly translocated to the nucleus of podocytes following exposure to cold, but without new protein synthesis.


PLOS ONE | 2018

Loss of chromosome Y in blood, but not in brain, of suicide completers.

Atsushi Kimura; Akitoyo Hishimoto; Ikuo Otsuka; Satoshi Okazaki; Shuken Boku; Tadasu Horai; Takeshi Izumi; Motonori Takahashi; Yasuhiro Ueno; Osamu Shirakawa; Ichiro Sora

Men have a higher rate of completed suicide than women, which suggests that sex chromosome abnormalities may be related to the pathophysiology of suicide. Recent studies have found an aberrant loss of chromosome Y (LOY) in various diseases; however, no study has investigated whether there is an association between LOY and suicide. The purpose of this study was to determine whether LOY occurs in men who completed suicide. Our study consisted of 286 male Japanese subjects comprised of 140 suicide completers without severe physical illness (130 post-mortem samples of peripheral blood and 10 brains) and 146 age-matched control subjects (130 peripheral blood samples from healthy individuals and 16 post-mortem brains). LOY was measured as the chromosome Y/chromosome X ratio of the fluorescent signal of co-amplified short sequences from the Y-X homologous amelogenin genes (AMELY and AMELX). Regression analyses showed that LOY in the blood of suicide completers was significantly more frequent than that found in controls (odds ratio = 3.50, 95% confidence interval = 1.21–10.10), but not in the dorsolateral prefrontal cortex (DLPFC) region of brain. Normal age-dependent LOY in blood was found in healthy controls (r = -0.353, p < 0.001), which was not seen in suicide completers (r = -0.119, p = 0.177). DLPFC tissue had age-dependent LOY (B = -0.002, p = 0.015), which was independent of phenotype. To our knowledge, this is the first study demonstrating that LOY in blood is associated with suicide completion. In addition, our findings are the first to also indicate that age-dependent LOY may occur not only in blood, but also in specific brain regions.

Collaboration


Dive into the Motonori Takahashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge