Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Motoo Suzuki is active.

Publication


Featured researches published by Motoo Suzuki.


Nature Protocols | 2007

Single protein production (SPP) system in Escherichia coli

Motoo Suzuki; Lili Mao; Masayori Inouye

Here, we provide a detailed protocol for the single protein production (SPP) system, which is designed to produce only a single protein of interest in living Escherichia coli cells. Induction of MazF, an mRNA interferase that cleaves RNA at ACA nucleotide sequences, results in complete cell growth arrest. However, if mRNA encoding a protein of interest is engineered to be devoid of ACA base triplets and is induced at 15 °C using pCold vectors in MazF-expressing cells, only the protein from this mRNA is produced at a yield of 20–30% of total cellular protein; other cellular protein synthesis is almost completely absent. In theory, any protein can be produced by the SPP system. Protein yields are typically unaffected even if the culture is condensed up to 40-fold, reducing the cost of protein production by up to 97.5%. The SPP system has a number of key features important for protein production, including high-yield and prolonged production of isotope-labeled protein at a very high signal-to-noise ratio. The procedure can be completed in 7 d after cloning of an ACA-less target gene into the expression system.


Journal of Biological Chemistry | 2006

Bacterial Bioreactors for High Yield Production of Recombinant Protein

Motoo Suzuki; Rohini Roy; Haiyan Zheng; Nancy A. Woychik; Masayori Inouye

We developed a new bacterial expression system that utilizes a combination of attributes (low temperature, induction of an mRNA-specific endoribonuclease causing host cell growth arrest, and culture condensation) to facilitate stable, high level protein expression, almost 30% of total cellular protein, without background protein synthesis. With the use of an optimized vector, exponentially growing cultures could be condensed 40-fold without affecting protein yields, which lowered sample labeling costs to a few percent of the cost of a typical labeling experiment. Because the host cells were completely growth-arrested, toxic amino acids such as selenomethionine and fluorophenylalanine were efficiently incorporated into recombinant proteins in the absence of cytotoxicity. Therefore, this expression system using Escherichia coli as a bioreactor is especially well suited to structural genomics, large-scale protein expressions, and the production of cytotoxic proteins.


Journal of Bacteriology | 2012

Clostridium difficile MazF Toxin Exhibits Selective, Not Global, mRNA Cleavage

Francesca P. Rothenbacher; Motoo Suzuki; Jennifer M. Hurley; Thomas J. Montville; Thomas J. Kirn; Ming Ouyang; Nancy A. Woychik

Clostridium difficile is an important, emerging nosocomial pathogen. The transition from harmless colonization to disease is typically preceded by antimicrobial therapy, which alters the balance of the intestinal flora, enabling C. difficile to proliferate in the colon. One of the most perplexing aspects of the C. difficile infectious cycle is its ability to survive antimicrobial therapy and transition from inert colonization to active infection. Toxin-antitoxin (TA) systems have been implicated in facilitating persistence after antibiotic treatment. We identified only one TA system in C. difficile strain 630 (epidemic type X), designated MazE-cd and MazF-cd, a counterpart of the well-characterized Escherichia coli MazEF TA system. This E. coli MazF toxin cleaves mRNA at ACA sequences, leading to global mRNA degradation, growth arrest, and death. Likewise, MazF-cd expression in E. coli or Clostridium perfringens resulted in growth arrest. Primer extension analysis revealed that MazF-cd cleaved RNA at the five-base consensus sequence UACAU, suggesting that the mRNAs susceptible to cleavage comprise a subset of total mRNAs. In agreement, we observed differential cleavage of several mRNAs by MazF-cd in vivo, revealing a direct correlation between the number of cleavage recognition sites within a given transcript and its susceptibility to degradation by MazF-cd. Interestingly, upon detailed statistical analyses of the C. difficile transcriptome, the major C. difficile virulence factor toxin B (TcdB) and CwpV, a cell wall protein involved in aggregation, were predicted to be significantly resistant to MazF-cd cleavage.


Journal of Bacteriology | 2002

Envelope Disorder of Escherichia coli Cells Lacking Phosphatidylglycerol

Motoo Suzuki; Hiroshi Hara; Kouji Matsumoto

Phosphatidylglycerol, the most abundant acidic phospholipid in Escherichia coli, is considered to play specific roles in various cellular processes that are essential for cell viability. A null mutation of pgsA, which encodes phosphatidylglycerophosphate synthase, does indeed confer lethality. However, pgsA null mutants are viable if they lack the major outer membrane lipoprotein (Lpp) (lpp mutant) (S. Kikuchi, I. Shibuya, and K. Matsumoto, J. Bacteriol. 182:371-376, 2000). Here we show that Lpp expressed from a plasmid causes cell lysis in a pgsA lpp double mutant. The envelopes of cells harvested just before lysis could not be separated into outer and inner membrane fractions by sucrose density gradient centrifugation. In contrast, expression of a mutant Lpp (LppdeltaK) lacking the COOH-terminal lysine residue (required for covalent linking to peptidoglycan) did not cause lysis and allowed for the clear separation of the outer and inner membranes. We propose that in pgsA mutants LppdeltaK could not be modified by the addition of a diacylglyceryl moiety normally provided by phosphatidylglycerol and that this defect caused unmodified LppdeltaK to accumulate in the inner membrane. Although LppdeltaK accumulation did not lead to lysis, the accumulation of unmodified wild-type Lpp apparently led to the covalent linking to peptidoglycan, causing the inner membrane to be anomalously anchored to peptidoglycan and eventually leading to lysis. We suggest that this anomalous anchoring largely explains a major portion of the nonviable phenotypes of pgsA null mutants.


Applied and Environmental Microbiology | 2011

Development and Application of a Method for Counterselectable In-Frame Deletion in Clostridium perfringens

Hirofumi Nariya; Shigeru Miyata; Motoo Suzuki; Eiji Tamai; Akinobu Okabe

ABSTRACT Many pathogenic clostridial species produce toxins and enzymes. To facilitate genome-wide identification of virulence factors and biotechnological application of their useful products, we have developed a markerless in-frame deletion method for Clostridium perfringens which allows efficient counterselection and multiple-gene disruption. The system comprises a galKT gene disruptant and a suicide galK plasmid into which two fragments of a target gene for in-frame deletion are cloned. The system was shown to be accurate and simple by using it to disrupt the alpha-toxin gene of the organism. It was also used to construct of two different virulence-attenuated strains, ΗΝ1303 and HN1314: the former is a disruptant of the virRS operon, which regulates the expression of virulence factors, and the latter is a disruptant of the six genes encoding the α, θ, and κ toxins; a clostripain-like protease; a 190-kDa secretory protein; and a putative cell wall lytic endopeptidase. Comparison of the two disruptants in terms of growth ability and the background levels of secreted proteins showed that HN1314 is more useful than ΗΝ1303 as a host for the large-scale production of recombinant proteins.


Protein Expression and Purification | 2011

High-level production and purification of clostripain expressed in a virulence-attenuated strain of Clostridium perfringens.

Hiroaki Tanaka; Hirofumi Nariya; Motoo Suzuki; Hitoshi Houchi; Eiji Tamai; Shigeru Miyata; Akinobu Okabe

Clostripain (CLO) produced by Clostridium histolyticum is an arginine-specific endopeptidase with the potential for applicability to diverse medical and industrial uses. In this study, we developed an expression system allowing high-level production and efficient purification of recombinant CLO (rCLO). Our expression system comprises pCLO, an rCLO expressing vector, and Clostridium perfringens 13Δ6, an in-frame deletion strain as to six genes encoding major virulence factors and secretory proteins. rCLO was purified from the culture supernatant of C. perfringens 13Δ6/pCLO by ammonium sulfate precipitation, hydroxyapatite chromatography, and affinity chromatography on benzamidine-Sepharose. From 200 ml of culture supernatant 4.5 mg of purified rCLO was obtained. N-Terminal amino acid sequencing and molecular mass determination of the purified rCLO and commercially available CLO revealed that the two enzymes have identical subunits, a 38.1-kDa heavy chain and a 15.0-kDa light chain, indicating that rCLO is processed in the same manner as CLO. Analysis of the enzymatic activities toward N-benzoyl-L-arginine p-nitroanilide and acyl-L-lysine p-nitroanilide showed that rCLO and CLO exhibit strict specificity for arginine at the P1 position, and that the specific activity of the former is approximately 2-fold higher than that of the latter. These results indicate that the new method involving a virulence-attenuated C. perfringens strain is useful for preparing large amounts of high-grade rCLO.


Microbiology | 2010

Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture

Sadao Manabe; Hirofumi Nariya; Shigeru Miyata; Hiroaki Tanaka; Junzaburo Minami; Motoo Suzuki; Yuki Taniguchi; Akinobu Okabe

Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.


PLOS ONE | 2016

DNA Inversion Regulates Outer Membrane Vesicle Production in Bacteroides fragilis

Haruyuki Nakayama-Imaohji; Katsuhiko Hirota; Hisashi Yamasaki; Saori Yoneda; Hirofumi Nariya; Motoo Suzuki; Thomas Secher; Yoichiro Miyake; Eric Oswald; Tetsuya Hayashi; Tomomi Kuwahara

Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.


Japanese Journal of Ophthalmology | 2018

Genetic diversity and persistent colonization of Enterococcus faecalis on ocular surfaces

Daisuke Todokoro; Hiroshi Eguchi; Takashi Suzuki; Motoo Suzuki; Haruyuki Nakayama-Imaohji; Tomomi Kuwahara; Takahiro Nomura; Haruyoshi Tomita; Hideo Akiyama

PurposeEnterococcus faecalis causes severe acute endophthalmitis and often leads to poor visual outcomes. Conjunctival bacterial cultures occasionally grow atypical bacteria including E. faecalis, which can potentially contribute to the development of postoperative endophthalmitis. However, the characteristics of these ocular E. faecalis strains are unknown. This study is the first attempt to determine the population characteristics of E. faecalis clinical isolates from eye infections and ocular commensals.Study designRetrospectiveMethodsTwenty-eight E. faecalis ocular isolates were collected from 23 patients at 3 referring hospitals. The multilocus sequence typing (MLST) data were analyzed using the eBURST program. Phenotypes of cytolysin and gelatinase, antibiotic susceptibility, and mutations of the quinolone resistance-determining regions (QRDRs) of gyrA and parC were also examined. Pulsed-field gel electrophoresis (PFGE) was performed for strains from the same patients.ResultsPFGE revealed that 3 patients retained identical strains for 10 months to 2 and a half years. MLST identified 12 sequence types (STs), which were clustered into 3 clonal complexes (CCs) and 8 singletons, with ST179 the largest. Thirteen of the 23 isolates (56.5%) belonged to CC58, CC8, or CC2, which have previously been reported to be major CCs. Six of the 23 strains (26.0%) exhibited high-level quinolone resistance derived from mutations of the QRDRs in both gyrA and parC.ConclusionsThe sequence types of E. faecalis ocular isolates were divergent, with no eye-specific lineages observed. Persistent colonization of E. faecalis on the ocular surface was demonstrated in patients with chronic ocular surface diseases.


Journal of Pediatric Gastroenterology and Nutrition | 2017

Nutritional Benefit of Recycling of Bowel Content in an Infant With Short Bowel Syndrome

Aya Tanaka; Haruyuki Nakayama-Imaohji; Ryuichi Shimono; Motoo Suzuki; Takayuki Fujii; Hiroyuki Kubo; Saneyuki Yasuda; Kousuke Koyano; Shinji Nakamura; Naomi Katsuki; Tomomi Kuwahara

Journal of Pediatric Gastroenterology and Nutrition Publish Ahead of Print DOI: 10.1097/MPG.0000000000001630 Nutritional Benefit of Recycling of Bowel Content in an Infant with Short Bowel Syndrome Aya Tanaka, M.D., Ph.D., Haruyuki Nakayama-Imaohji, Ph.D., Ryuichi Shimono, M.D., Ph.D., Motoo Suzuki, Ph.D., Takayuki Fujii, M.D., Hiroyuki Kubo, M.D., Saneyuki Yasuda, M.D., Ph.D., Kousuke Koyano, M.D., Ph.D., Shinji Nakamura, M.D., Ph.D., Naomi Katsuki, M.D., Ph.D., Tomomi Kuwahara, M.D., Ph.D. 1. Department of Pediatric Surgery, Faculty of Medicine, Kagawa University 2. Department of Microbiology, Faculty of Medicine, Kagawa University 3. Maternal Perinatal Center, Faculty of Medicine, Kagawa University 4. Department of Pediatrics, Faculty of Medicine, Kagawa University 5. Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University

Collaboration


Dive into the Motoo Suzuki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge