Motoshi Sakakura
Yokohama City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Motoshi Sakakura.
Journal of the American Society for Mass Spectrometry | 2010
Motoshi Sakakura; Mitsuo Takayama
The use of 5-aminosalicylic acid (5-ASA) as a new matrix for in-source decay (ISD) of peptides including mono- and di-phosphorylated peptides in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is described. The use of 5-ASA in MALDI-ISD has been evaluated from several standpoints: hydrogen-donating ability, the outstanding sharpness of molecular and fragment ion peaks, and the presence of interference peaks such as metastable peaks and multiply charged ions. The hydrogen-donating ability of several matrices such as α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), 1,5-diaminonaphthalene (1,5-DAN), sinapinic acid (SA), and 5-ASA was evaluated by using the peak abundance of a reduction product [M + 2H + H]+ to that of non-reduced protonated molecule [M + H]+ of the cyclic peptide vasopressin which contains a disulfide bond (S-S). The order of hydrogendonating ability was 1,5-DAN > 5-ASA > 2,5-DHB > SA = CHCA. The chemicals 1,5-DAN and 5-ASA in particular can be classified as reductive matrices. 5-ASA gave peaks with higher sharpness for protonated molecules and fragment ions than other matrices and did not give any interference peaks such as multiply-protonated ions and metastable ions in the ISD mass spectra of the peptides used. Particularly, 1,5-DAN and 5-ASA gave very little metastable peaks. This indicates that 1,5-DAN and 5-ASA are more “cool” than other matrices. The 1,5-DAN and 5-ASA can therefore be termed “reductive cool” matrix. Further, it was confirmed that ISD phenomena such as N-Cα bond cleavage and reduction of S-S bond is a single event in the ion source. The characteristic fragmentations, which form a− and (a + 2)-series ions, [M + H − 15]+, [M + H − 28]+, and [M + H − 44]+ ions in the MALDI-ISD are described.
Ultrasonics Sonochemistry | 2009
Motoshi Sakakura; Mitsuo Takayama
The sonolytic hydrolysis of peptides with addition of phenolic reagents to aqueous solutions is described. Sonolysis of an aqueous solution of peptides to which catechol (o-dihydroxybenzene) had been added resulted in hydrolytic products reflecting the amino acid sequence without any side reactions, while sonolysis without any additives resulted in oxidation analytes and degradation products caused by side reactions. Although the use of additives such as resorcinol (m-dihydroxybenzene), hydroquinone (p-dihydroxybenzene) and phenol was also effective in producing sequence related products, several degradation products were produced by side reactions. A characteristic of the sonolysis of peptides is that the N-terminal side of proline, Xxx-Pro, is more susceptible than other amino acid residues to the process. This characteristic of sonolysis is superior to that of acid hydrolysis in which cleavage at the C-terminal side of proline, Pro-Xxx is difficult, and where dehydration products result due to side reactions.
Ultrasonics Sonochemistry | 2012
Motoshi Sakakura; Mitsuo Takayama
Described here is the sonolytic hydrolysis of peptides achieved by treatment of aqueous solution to which the radical scavenger 1,4-benzenedithiol (1,4-BDT), which has hydrogen donating ability, has been added. Mass spectrometric analysis of the products of sonolytic hydrolysis gave information about amino acid sequence of the peptides without any byproducts. The additive 1,4-BDT improves the sonolytic hydrolysis of peptides in terms of the rate of hydrolysis reaction and the amount of additive required when compared to catechol, a previously reported additive. The sonolytic hydrolysis of peptides differs from both acid hydrolysis and hydrogen atom-induced dissociation named matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD), in characteristics. We propose a mechanistic reaction for the sonolytic hydrolysis of peptides, based on the mechanisms of both acid hydrolysis and MALDI-ISD processes. The sonolytic hydrolysis of peptides upon addition of hydrogen donating radical scavengers can be rationalized via the attachment of a hydrogen atom to the carbonyl oxygen with subsequent hydrolysis.
International Journal of Mass Spectrometry | 2013
Daiki Asakawa; Motoshi Sakakura; Mitsuo Takayama
Analyst | 2014
Kanako Sekimoto; Motoshi Sakakura; Takatomo Kawamukai; Hiroshi Hike; Teruhisa Shiota; Fumihiko Usui; Yasuhiko Bando; Mitsuo Takayama
Mass spectrometry | 2012
Mitsuo Takayama; Issei Osaka; Motoshi Sakakura
Mass spectrometry | 2012
Daiki Asakawa; Motoshi Sakakura; Mitsuo Takayama
Analyst | 2016
Kanako Sekimoto; Motoshi Sakakura; Takatomo Kawamukai; Hiroshi Hike; Teruhisa Shiota; Fumihiko Usui; Yasuhiko Bando; Mitsuo Takayama
Archive | 2010
Mitsuo Takayama; Motoshi Sakakura
Journal of the Mass Spectrometry Society of Japan | 2018
Motoshi Sakakura