Mouadh Mihoub
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mouadh Mihoub.
Journal of Biological Chemistry | 2015
Gilbert Richarme; Mouadh Mihoub; Linh Chi Bui; Thibaut Leger; Aazdine Lamouri
Background: Protein glycation is a nonenzymatic covalent reaction between proteins and carbonyl groups resulting in protein denaturation. Results: DJ-1 is the first protein deglycase that repairs proteins from glycation by glyoxals, which constitutes most glycation damage. Conclusion: DJ-1 is a novel protein repair enzyme that protects proteins against glycation. Significance: DJ-1 deglycase activity changes our view on glycation/deglycation and DJ-1-associated Parkinsonism. Glycation is an inevitable nonenzymatic covalent reaction between proteins and endogenous reducing sugars or dicarbonyls (methylglyoxal, glyoxal) that results in protein inactivation. DJ-1 was reported to be a multifunctional oxidative stress response protein with poorly defined function. Here, we show that human DJ-1 is a protein deglycase that repairs methylglyoxal- and glyoxal-glycated amino acids and proteins by acting on early glycation intermediates and releases repaired proteins and lactate or glycolate, respectively. DJ-1 deglycates cysteines, arginines, and lysines (the three major glycated amino acids) of serum albumin, glyceraldehyde-3-phosphate dehydrogenase, aldolase, and aspartate aminotransferase and thus reactivates these proteins. DJ-1 prevented protein glycation in an Escherichia coli mutant deficient in the DJ-1 homolog YajL and restored cell viability in glucose-containing media. These results suggest that DJ-1-associated Parkinsonism results from excessive protein glycation and establishes DJ-1 as a major anti-glycation and anti-aging protein.
Journal of Biological Chemistry | 2012
Hai-Tuong Le; Valérie Gautier; Fatoum Kthiri; Abderrahim Malki; Nadia Messaoudi; Mouadh Mihoub; Ahmed Landoulsi; Young Jun An; Sun-Shin Cha; Gilbert Richarme
Background: A novel function for YajL, the prokaryotic homolog of the Parkinsonism-associated protein DJ-1. Results: YajL and DJ-1 form mixed disulfides with members of the thiol proteome. Conclusion: This covalent chaperone function supports their role in oxidative stress protection. Significance: There is an exciting encounter between the crucial cysteine 106 of these covalent chaperones and the oxidized cysteines of their substrates. YajL is the closest Escherichia coli homolog of the Parkinsonism-associated protein DJ-1, a multifunctional oxidative stress response protein whose biochemical function remains unclear. We recently reported the aggregation of proteins in a yajL mutant in an oxidative stress-dependent manner and that YajL exhibits chaperone activity. Here, we show that YajL displays covalent chaperone and weak protein oxidoreductase activities that are dependent on its exposed cysteine 106. It catalyzes reduced RNase oxidation and scrambled RNase isomerization and insulin reduction and forms mixed disulfides with many cellular proteins upon oxidative stress. The formation of mixed disulfides was detected by immunoblotting bacterial extracts with anti-YajL antibodies under nonreducing conditions. Disulfides were purified from bacterial extracts on a YajL affinity column, separated by nonreducing-reducing SDS-PAGE, and identified by mass spectrometry. Covalent YajL substrates included ribosomal proteins, aminoacyl-tRNA synthetases, chaperones, catalases, peroxidases, and other proteins containing cysteines essential for catalysis or FeS cluster binding, such as glyceraldehyde-3-phosphate dehydrogenase, aldehyde dehydrogenase, aconitase, and FeS cluster-containing subunits of respiratory chains. In addition, we show that DJ-1 also forms mixed disulfides with cytoplasmic proteins upon oxidative stress. These results shed light on the oxidative stress-dependent chaperone function of YajL and identify YajL substrates involved in translation, stress protection, protein solubilization, and metabolism. They reveal a crucial role for cysteine 106 and suggest that DJ-1 also functions as a covalent chaperone. These findings are consistent with several defects observed in yajL or DJ-1 mutants, including translational defects, protein aggregation, oxidative stress sensitivity, and metabolic deficiencies.
Biochemical and Biophysical Research Communications | 2015
Mouadh Mihoub; Jad Abdallah; Brigitte Gontero; Julien Dairou; Gilbert Richarme
Hsp31 belongs to the PfpI/Hsp31/DJ-1 superfamily, and has been reported to display chaperone, peptidase and glutathione-independent glyoxalase activities. Here, we show that Hsp31 repairs glyoxal- and methylglyoxal-glycated amino acids and proteins and releases repaired proteins and lactate or glycolate, respectively. Hsp31 deglycates cysteine, arginine and lysine by acting on early glycation intermediates (hemithioacetals and aminocarbinols) and prevents the formation of Schiff bases and advanced glycation endproducts. Hsp31 repairs glycated serum albumin, glyceraldehyde-3-phosphate dehydrogenase, fructose biphosphate aldolase and aspartate aminotransferase. Moreover, we show that bacterial extracts from the hchA mutant display increased glycation levels and that the apparent glyoxalase activity of Hsp31 reflects its deglycase activity. Our results suggest that other Hsp31 members, previously characterized as glutathione-independent glyoxalases, likely function as protein deglycases.
Biochemical and Biophysical Research Communications | 2016
Jad Abdallah; Mouadh Mihoub; Valérie Gautier; Gilbert Richarme
YhbO and YajL belong to the PfpI/Hsp31/DJ-1 superfamily. Both proteins are involved in protection against environmental stresses. Here, we show that, like DJ-1 and Hsp31, they repair glyoxal- and methylglyoxal-glycated proteins. YhbO and YajL repair glycated serum albumin, collagen, glyceraldehyde-3-phosphate dehydrogenase, and fructose biphosphate aldolase. Bacterial extracts from deglycase mutants display increased glycation levels, whereas deglycase overexpression decreases protein glycation. Moreover, yhbO and yajL mutants display decreased viability in methylglyoxal- or glucose-containing media. Finally, the apparent glyoxalase activities of YhbO and YajL reflect their deglycase activities.
International Journal of Food Microbiology | 2012
Mouadh Mihoub; Alya El May; Amine Aloui; Abdelwaheb Chatti; Ahmed Landoulsi
This study was carried out to explore the adaptive mechanisms of S. typhimurium particularly, the implication of the Dam methyltransferase in the remodelling of membrane lipid composition to overcome magnetic field stress. With this aim, we focused our analyses on the increase in viable numbers and membrane lipid modifications of S. typhimurium wild-type and dam mutant cells exposed for 10h to static magnetic fields (SMF; 200 mT). For the wild-type strain, exposure to SMF induced a significant decrease (p<0.05) of CFU at 6h, followed by an increase between 8 and 10h. Growth of the dam mutant was significantly affected (p<0.05) after 6h and no recovery was observed until 10h, highlighting a different behavior of SMF stressed wild-type and dam mutant strains. SMF significantly affected the phospholipid proportions in the two strains. The most affected were those of the acidic phospholipids, cardiolipins (CL). In the dam strain the phospholipid response to SMF followed a globally similar trend as in the wild-type with however lower effects, leading mainly to an unusual accumulation of CL. This would in part explain the different behavior of the wild-type and the dam strain. Results showed a significant increase of membrane cyclic fatty acids Cyc17 and Cyc19 in the wild-type strain but only the Cyc17 in the dam strain and a meaningful increase of the total unsaturated fatty acids (UFAs) to total saturated fatty acids (SFAs) ratios of the exposed cells compared to controls from 3 to 9h (p<0.05) for both strains. The net increase of the total UFAs to total SFAs ratios seemed to result mainly from the increase of (C18:1) proportion (p<0.05) and to a lower extent from that of (C16:1) (p<0.05). These modifications of cyclic and unsaturated fatty acid proportions constitute an adaptive response to SMF stress in S. typhimurium wild-type and dam mutants to maintain an optimum level of membrane fluidity under SMF.
Journal of Bacteriology | 2013
Nadia Messaoudi; Valérie Gautier; Fatoum Kthiri; Gaëlle Lelandais; Mouadh Mihoub; Danièle Joseleau-Petit; Teresa Caldas; Chantal Bohn; Leah Tolosa; Govind Rao; Kazuyuki Tao; Ahmed Landoulsi; Philippe Bouloc; Gilbert Richarme
YajL is the most closely related Escherichia coli homolog of Parkinsonism-associated protein DJ-1, a protein with a yet-undefined function in the oxidative-stress response. YajL protects cells against oxidative-stress-induced protein aggregation and functions as a covalent chaperone for the thiol proteome, including FeS proteins. To clarify the cellular responses to YajL deficiency, transcriptional profiling of the yajL mutant was performed. Compared to the parental strain, the yajL mutant overexpressed genes coding for chaperones, proteases, chemical chaperone transporters, superoxide dismutases, catalases, peroxidases, components of thioredoxin and glutaredoxin systems, iron transporters, ferritins and FeS cluster biogenesis enzymes, DNA repair proteins, RNA chaperones, and small regulatory RNAs. It also overexpressed the RNA polymerase stress sigma factors sigma S (multiple stresses) and sigma 32 (protein stress) and activated the OxyR and SoxRS oxidative-stress transcriptional regulators, which together trigger the global stress response. The yajL mutant also overexpressed genes involved in septation and adopted a shorter and rounder shape characteristic of stressed bacteria. Biochemical experiments showed that this upregulation of many stress genes resulted in increased expression of stress proteins and improved biochemical function. Thus, protein defects resulting from the yajL mutation trigger the onset of a robust and global stress response in a prokaryotic model of DJ-1-associated Parkinsonism.
World Journal of Microbiology & Biotechnology | 2012
Abdelwaheb Chatti; Nadia Messaoudi; Mouadh Mihoub; Ahmed Landoulsi
In addition to their role in the virulence attenuation of Salmonella and other pathogens, dam or seqA genes increase the sensitivity towards hydrogen peroxide. The aim of our study is to investigate the effect of H2O2 on the motility, the catalase and superoxide dismutase activities of dam and/or seqA mutants of Salmonella typhimurium. Our findings showed significant differences of the effects of H2O2 on the motility between wild type strain and all of mutants. Hydrogen peroxide changes SOD isoenzyme profile of these mutants by disappearance of Fe-SOD. Concerning the catalase, an increase of its activity was observed in the wild type, dam and seqA mutant. However, H2O2 decreases the activity of this enzyme in the double mutant strain. We can suggest that the dam gene, together with seqA, play a protective role in the oxidative stress response of Salmonella typhimurium.
Foodborne Pathogens and Disease | 2010
Amine Aloui; Mouadh Mihoub; Mohamed Marwan Sethom; Abdelwaheb Chatti; Moncef Feki; Naziha Kaabachi; Ahmed Landoulsi
We examined the phospholipids (Phls) and the membrane fatty acid (FA) composition in Salmonella enterica serovar Typhimurium dam and/or seqA mutants. Phosphatidylglycerol, phosphatidylethanolamine (PE), and cardiolipin (CL) are the major Phls present in all the strains and accounted for greater than 95% of the total lipid phosphorus. Phosphatidic acid and phosphatidylserine are the minor ones. The seqA mutant showed a decrease in PE and an increase in CL and phosphatidylglycerol proportion compared with the wild-type strain. The same changes were observed with the seqA dam double mutant. However, the dam mutation caused an unusual accumulation of CL with a significant decrease in the PE content, compared with the isogenic wild-type strain. FA composition of the total lipids and the different fractions containing Phls have been determined. The major saturated FAs (SFAs) and unsaturated FAs (UFAs) found were C(14:0), C(16:0) and C(16:1w7), C(18:1w9), respectively. Cyclic FAs, cyc(17:0) and cyc(19:0), were also present in appreciable amounts. Moreover, dam and/or seqA mutations caused a decrease in UFA/SFA ratio and there was a progressive reduction in the content of C(16:1w7) and C(18:1w9), going through the order seqA, dam/seqA, and dam mutants. This decrease in UFA content was compensated for in all strains by an increase in the corresponding C(17-) and C(19-) cyclic FAs. So these UFAs were converted to their cyclopropane derivatives, which resulted in a low UFA/SFA ratio. SeqA and Dam proteins might regulate FA biosynthesis and Phls composition of Salmonella enterica serovar Typhimurium.
African Journal of Biotechnology | 2016
Slah Hidouri; Nadia Messaoudi; Mouadh Mihoub; Zouhair M. Baccar; Ahmed Landoulsi
The immobilization of a whole microbial cell is an important process used in nanotechnology of biosensors and other related fields, especially the development of bio-hybrid materials based on live organisms and inorganic compounds. Here, we described an essay to develop a bio-hybrid material based on Salmonella Typhimurium cells and layered double hydroxides (LDH). The synthetic clays have a good capacity to be a host matrix for immobilization of live entity like bacteria. The incorporation of LDH in the nutritive broth shows the capacity of bacteria to grow under the inorganic conditions. The immobilization of bacteria onto the LDH Layer deposited on gold wafers was successfully done and the verification of the final material consistence was given by Fourier transform infrared spectroscopy (FTIR) analysis that shows the possibility of various covalent links that can be established between the polar functional group of the cell and the interlayer level in the LDH. The roughness of the surface was given by scanning electron microscope (SEM) imaging and shows the homogeneity of cell distribution on the LDH layer. n n Key words: Layer double hydroxide, Salmonella Typhimurium, Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), X-ray diffraction (XRD), energy dispersive X-ray (EDX); scanning electron microscope (SEM)
Microbiology | 2015
Nadia Messaoudi; Valérie Gautier; Mouadh Mihoub; Gaëlle Lelandais; Philippe Bouloc; Ahmed Landoulsi; Gilbert Richarme
YajL is the closest prokaryotic homologue of Parkinsons disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimers and Parkinsons diseases.