Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mouer Wang is active.

Publication


Featured researches published by Mouer Wang.


Circulation Research | 2015

Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model

Johannes Riegler; Malte Tiburcy; Antje D. Ebert; Evangeline Tzatzalos; Uwe Raaz; Oscar J. Abilez; Qi Shen; Nigel G. Kooreman; Evgenios Neofytou; Vincent C. Chen; Mouer Wang; Tim Meyer; Philip S. Tsao; Andrew J. Connolly; Larry A. Couture; Joseph D. Gold; Wolfram H. Zimmermann; Joseph C. Wu

RATIONALE Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.


Circulation | 2017

Defined engineered human myocardium with advanced maturation for applications in heart failure modelling and repair

Malte Tiburcy; James E. Hudson; Paul Balfanz; Susanne Schlick; Tim De Meyer; Mei-Ling Chang Liao; Elif Levent; Farah S. Raad; Sebastian Zeidler; Edgar Wingender; Johannes Riegler; Mouer Wang; Joseph D. Gold; Izhak Kehat; Erich Wettwer; Ursula Ravens; Pieterjan Dierickx; Linda W. van Laake; Marie-José Goumans; Sara Khadjeh; Karl Toischer; Gerd Hasenfuss; Larry A. Couture; Andreas Unger; Wolfgang A. Linke; Toshiyuki Araki; Benjamin G. Neel; Gordon Keller; Lior Gepstein; Joseph C. Wu

Background: Advancing structural and functional maturation of stem cell–derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell–derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to &bgr;-adrenergic stimulation mediated via canonical &bgr;1- and &bgr;2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell–derived cardiomyocytes under defined, serum-free conditions.


Stem cell reports | 2016

Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas.

Johannes Riegler; Antje D. Ebert; Xulei Qin; Qi Shen; Mouer Wang; Mohamed Ameen; Kazuki Kodo; Sang Ging Ong; Won Hee Lee; Grace M. Lee; Evgenios Neofytou; Joseph D. Gold; Andrew J. Connolly; Joseph C. Wu

Summary The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted these cardiomyocytes into immunocompromised rat hearts post-myocardial infarction. We compared magnetic resonance imaging (MRI), cardiac ultrasound, and serum biomarkers for their ability to delineate teratoma formation and growth. MRI enabled the detection of teratomas with a volume >8 mm3. A combination of three plasma biomarkers (CEA, AFP, and HCG) was able to detect teratomas with a volume >17 mm3 and with a sensitivity of more than 87%. Based on our findings, a combination of serum biomarkers with MRI screening may offer the highest sensitivity for teratoma detection and tracking.


Circulation Research | 2017

Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured MyocardiumNovelty and Significance

Atsushi Tachibana; Michelle R. Santoso; Morteza Mahmoudi; Praveen Shukla; Lei Wang; Mihoko V. Bennett; Andrew B. Goldstone; Mouer Wang; Masahiro Fukushi; Antje D. Ebert; Y. Joseph Woo; Eric Rulifson; Phillip C. Yang

Rationale: Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. Objective: To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. Methods and Results: Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. Conclusions: This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.


Journal of Cardiovascular Magnetic Resonance | 2015

In vivo multi-modality tracking of the regenerative effects of the human induced pluripotent stem cell-derived cardiomyocytes (iCMs)

Morteza Mahmoudi; Eric Rulifson; Atsushi Tachibana; Mouer Wang; Joseph C. Wu; Phillip C. Yang

Background In vivo multi-modality cellular and molecular imaging of the engrafted iCMs is necessary to characterize the engraftment and the regional effects on the viability of the injured myocardium. Zinc finger nuclease (ZFN)mediated integration of the reporter gene into the AAVS1 locus in the iCMs and manganese enhanced MRI (MEMRI) should allow precise in vivo detection of myocardial regeneration.


Journal of the American College of Cardiology | 2015

INCREASED MYOCARDIAL VIABILITY AND FUNCTION MEASURED BY MANGANESE-ENHANCED MRI (MEMRI) DEMONSTRATE MYOCARDIAL REGENERATION BY HUMAN PLURIPOTENT STEM CELL DERIVED CARDIOMYOCYTES (HPCMS)

Atsushi Tachibana; Eric Rulifson; Yuka Matsuura; Rahul Thakker; Mouer Wang; Joseph C. Wu; Rajesh Dash; Phillip C. Yang

background: Human pluripotent stem cell derived cardiomyocytes (hPCMs) hold the potential to regenerate the myocardium and enable restoration. Manganese-enhanced MRI (MEMRI) allows direct evaluation of myocardial viability. Persistent engraftment of the hPCMs associated with viability and LVEF increase suggests regenerative changes. This study evaluates whether the hPCMs generate regenerative changes in the murine model of myocardial injury.


Journal of Cardiovascular Magnetic Resonance | 2015

Direct measurement of myocardial viability by manganese-enhanced MRI (MEMRI) tracks the regenerative effects by human pluripotent stem cell derived cardiomyocytes (hPCMs)

Atsushi Tachibana; Eric Rulifson; Yuka Matsuura; Rahul Thakker; Maya Agarwal; Morteza Mahmoudi; Mouer Wang; Joseph C. Wu; Rajesh Dash; Phillip C. Yang

Background Human pluripotent stem cell derived cardiomyocytes (hPCMs) may regenerate the myocardium to restore the cardiac function. Manganese-enhanced MRI (MEMRI) enters the cardiomyocytes via calcium channel to generate viability signal directly. Persistent engraftment of the hPCMs associated with increased myocardial viability and LVEF suggests regeneration. This study tests the hypothesis that hPCMs regenerate the injured murine myocardium.


Circulation Research | 2017

Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium

Atsushi Tachibana; Michelle R. Santoso; Morteza Mahmoudi; Praveen Shukla; Lei Wang; Mihoko V. Bennett; Andrew B. Goldstone; Mouer Wang; Masahiro Fukushi; Antje D. Ebert; Y. Joseph Woo; Eric Rulifson; Phillip C. Yang


Circulation | 2014

Abstract 19831: In Vivo Molecular Imaging of Human Pluripotent Stem Cell-derived Cardiomyocytes in a Murine Myocardial Injury Model via a Safe Harbor Integration of a Reporter Gene

Eric Rulifson; Yuka Matsuura; Miyuki Ariyama; Mouer Wang; Rahul Thakker; Atsushi Tachibana; Joseph C. Wu; Phillip C. Yang


Journal of the American College of Cardiology | 2015

USE OF HUMAN INDUCED PLURIPOTENT STEM CELL-DERIVED CARDIOMYOCYTES (ICMS) FOR HEART REGENERATION

Morteza Mahmoudi; Eric Rulifson; Atsushi Tachibana; Mouer Wang; Joseph C. Wu; Phillip C. Yang

Collaboration


Dive into the Mouer Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morteza Mahmoudi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge