Mounib Elchebly
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mounib Elchebly.
Atherosclerosis | 2013
Emile Levy; Ali Ben Djoudi Ouadda; Schohraya Spahis; Alain Théophile Sané; Carole Garofalo; Emilie Grenier; Lea Emonnot; Sabrina Yara; Patrick Couture; Jean-François Beaulieu; Daniel Ménard; Nabil G. Seidah; Mounib Elchebly
OBJECTIVES The proprotein convertase subtillisin/kexin type 9 (PCSK9) regulates cholesterol metabolism via degradation of low-density lipoprotein receptor (LDLr). Although PCSK9 is abundantly expressed in the intestine, limited data are available on its functions. The present study aims at determining whether PCSK9 plays important roles in cholesterol homeostasis and lipid transport in the gut. METHODS AND RESULTS Caco-2/15 cells were used allowing the exploration of the PCSK9 secretory route through the apical and basolateral compartments corresponding to intestinal lumen and serosal circulation, respectively. The output of PCSK9 occurred through the basolateral membrane, a site characterized by the location of LDLr. Co-immunoprecipitation studies indicated an association between PCSK9 and LDLr. Addition of purified recombinant wild type and D374Y gain-of function PCSK9 proteins to the basolateral medium was followed by a decrease in LDLr concomitantly with the accumulation of both forms of PCSK9. Furthermore, the latter caused a significant enhancement in cholesterol uptake also evidenced by a raised protein expression of cholesterol transporters NPC1L1 and CD36 without changes in SR-BI, ABCA1, and ABCG5/G8. Moreover, exogenous PCSK9 altered the activity of HMG-CoA reductase and acylcoenzyme A: cholesterol acyltransferase, and was able to enhance chylomicron secretion by positively modulating lipids and apolipoprotein B-48 biogenesis. Importantly, PCSK9 silencing led to opposite findings, which validate our data on the role of PCSK9 in lipid transport and metabolism. Moreover, PCSK9-mediated changes persisted despite LDLr knockdown. CONCLUSIONS These findings indicate that, in addition to its effect on LDLr, PCSK9 modulates cholesterol transport and metabolism, as well as production of apo B-containing lipoproteins in intestinal cells.
Molecular and Cellular Biology | 2009
Catherine Chabot; Kathleen Spring; Jean-Philippe Gratton; Mounib Elchebly; Isabelle Royal
ABSTRACT Functional inactivation of the protein tyrosine phosphatase DEP-1 leads to increased endothelial cell proliferation and failure of vessels to remodel and branch. DEP-1 has also been proposed to contribute to the contact inhibition of endothelial cell growth via dephosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a mediator of vascular development. However, how DEP-1 regulates VEGF-dependent signaling and biological responses remains ill-defined. We show here that DEP-1 targets tyrosine residues in the VEGFR2 kinase activation loop. Consequently, depletion of DEP-1 results in the increased phosphorylation of all major VEGFR2 autophosphorylation sites, but surprisingly, not in the overall stimulation of VEGF-dependent signaling. The increased phosphorylation of Src on Y529 under these conditions results in impaired Src and Akt activation. This inhibition is similarly observed upon expression of catalytically inactive DEP-1, and coexpression of an active Src-Y529F mutant rescues Akt activation. Reduced Src activity correlates with decreased phosphorylation of Gab1, an adapter protein involved in VEGF-dependent Akt activation. Hypophosphorylated Gab1 is unable to fully associate with phosphatidylinositol 3-kinase, VEGFR2, and VE-cadherin complexes, leading to suboptimal Akt activation and increased cell death. Overall, our results reveal that despite its negative role on global VEGFR2 phosphorylation, DEP-1 is a positive regulator of VEGF-mediated Src and Akt activation and endothelial cell survival.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2008
Zaava Ravid; Moise Bendayan; Edgard Delvin; Alain Théophile Sané; Mounib Elchebly; J. Lafond; M. Lambert; Geneviève Mailhot; Emile Levy
Growing evidence suggests that the small intestine may contribute to excessive postprandial lipemia, which is highly prevalent in insulin-resistant/Type 2 diabetic individuals and substantially increases the risk of cardiovascular disease. The aim of the present study was to determine the role of high glucose levels on intestinal cholesterol absorption, cholesterol transporter expression, enzymes controlling cholesterol homeostasis, and the status of transcription factors. To this end, we employed highly differentiated and polarized cells (20 days of culture), plated on permeable polycarbonate filters. In the presence of [(14)C]cholesterol, glucose at 25 mM stimulated cholesterol uptake compared with Caco-2/15 cells supplemented with 5 mM glucose (P < 0.04). Because combination of 5 mM glucose with 20 mM of the structurally related mannitol or sorbitol did not change cholesterol uptake, we conclude that extracellular glucose concentration is uniquely involved in the regulation of intestinal cholesterol transport. The high concentration of glucose enhanced the protein expression of the critical cholesterol transporter NPC1L1 and that of CD36 (P < 0.02) and concomitantly decreased SR-BI protein mass (P < 0.02). No significant changes were observed in the protein expression of ABCA1 and ABCG8, which act as efflux pumps favoring cholesterol export out of absorptive cells. At the same time, 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was decreased (P < 0.007), whereas ACAT activity remained unchanged. Finally, increases were noted in the transcription factors LXR-alpha, LXR-beta, PPAR-beta, and PPAR-gamma along with a drop in the protein expression of SREBP-2. Collectively, our data indicate that glucose at high concentrations may regulate intestinal cholesterol transport and metabolism in Caco-2/15 cells, thus suggesting a potential influence on the cholesterol absorption process in Type 2 diabetes.
Journal of Lipid Research | 2008
Alain Montoudis; Ernest G. Seidman; François Boudreau; Jean-François Beaulieu; Daniel Ménard; Mounib Elchebly; Geneviève Mailhot; Alain-Theophile Sane; Marie Lambert; Edgard Delvin; Emile Levy
The role of intestinal fatty acid binding protein (I-FABP) in lipid metabolism remains elusive. To address this issue, normal human intestinal epithelial cells (HIEC-6) were transfected with cDNA to overexpress I-FABP and compared with cells treated with empty pQCXIP vector. I-FABP overexpression stimulated mitochondrial [U-14C]oleate oxidation to CO2 and acid-soluble metabolites via mechanisms including the upregulation of protein expression and the activity of carnitine palmitoyltransferase 1, a critical enzyme controlling the entry of fatty acid (FA) into mitochondria, and increased activity of 3-hydroxyacyl-CoA dehydrogenase, a mitochondrial beta-oxidation enzyme. On the other hand, the gene and protein expression of the key enzymes FA synthase and acetyl-coenzyme A carboxylase 2 was decreased, suggesting diminished lipogenesis. Furthermore, I-FABP overexpression caused a decline in [14C]free cholesterol (CHOL) incorporation. Accordingly, a significant lessening was observed in the gene expression of Niemann Pick C1-Like 1, a mediator of CHOL uptake, along with an increase in the transcripts and protein content of ABCA1 and ABCG5/ABCG8, acting as CHOL efflux pumps. Furthermore, I-FABP overexpression resulted in increased levels of mRNA, protein mass, and activity of HMG-CoA reductase, the rate-limiting step in CHOL synthesis. Scrutiny of the nuclear receptors revealed augmented peroxisome proliferator-activated receptor alpha,gamma and reduced liver X receptor-alpha in HIEC-6 overexpressing I-FABP. Finally, I-FABP overexpression did not influence acyl-coenzyme A oxidase 1, which catalyzes the first rate-limiting step in peroxisomal FA beta-oxidation. Overall, our data suggest that I-FABP may influence mitochondrial FA oxidation and CHOL transport by regulating gene expression and interaction with nuclear receptors.
Endocrinology | 2009
Elaine Xu; Marie-Julie Dubois; Nelly Leung; Alexandre Charbonneau; Claire Turbide; Rita Kohen Avramoglu; Luisa DeMarte; Mounib Elchebly; Thomas Streichert; Emile Levy; Nicole Beauchemin; André Marette
Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) is a cell adhesion molecule within the Ig superfamily. The Tyr-phosphorylated isoform of CC1 (CC1-L) plays an important metabolic role in the regulation of hepatic insulin clearance. In this report, we show that CC1-deficient (Cc1(-/-)) mice are prone to hepatic steatosis, as revealed by significantly elevated hepatic triglyceride and both total and esterified cholesterol levels compared with age-matched wild-type controls. Cc1(-/-) mice were also predisposed to lipid-induced hepatic steatosis and dysfunction as indicated by their greater susceptibility to store lipids and express elevated levels of enzymatic markers of liver damage after chronic feeding of a high-fat diet. Hepatic steatosis in the Cc1(-/-) mice was linked to a significant increase in the expression of key lipogenic (fatty acid synthase, acetyl CoA carboxylase) and cholesterol synthetic (3-hydroxy-3-methylglutaryl-coenzyme A reductase) enzymes under the control of sterol regulatory element binding proteins-1c and -2 transcription factors. Cc1(-/-) mice also exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic expression of the key gluconeogenic transcriptional activators peroxisome proliferator-activated receptor-gamma coactivator-1 and Forkhead box O1. Lack of CC1 also exacerbated both glucose intolerance and hepatic insulin resistance induced by high-fat feeding, but insulin clearance was not further deteriorated in the high-fat-fed Cc1(-/-) mice. In conclusion, our data indicate that CC1 is a key regulator of hepatic lipogenesis and that Cc1(-/-) mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat.
Bioscience Reports | 2009
Ali Ben Djoudi Ouadda; Emile Levy; Ehud Ziv; Geneviève Lalonde; Alain Théophile Sané; Edgar Delvin; Mounib Elchebly
AMPK (AMP-activated protein kinase) has been suggested to be a central player regulating FA (fatty acid) metabolism through its ability to regulate ACC (acetyl-CoA carboxylase) activity. Nevertheless, its involvement in insulin resistance- and TD2 (Type 2 diabetes)-associated dyslipidaemia remains enigmatic. In the present study, we employed the Psammomys obesus gerbil, a well-established model of insulin resistance and TD2, in order to appreciate the contribution of the AMPK/ACC pathway to the abnormal hepatic lipid synthesis and increased lipid accumulation in the liver. Our investigation provided evidence that the development of insulin resistance/diabetic state in P. obesus is accompanied by (i) body weight gain and hyperlipidaemia; (ii) elevations of hepatic ACC-Ser79 phosphorylation and ACC protein levels; (iii) a rise in the gene expression of cytosolic ACC1 concomitant with invariable mitochondrial ACC2; (iv) an increase in hepatic AMPKalpha-Thr172 phosphorylation and protein expression without any modification in the calculated ratio of phospho-AMPKalpha to total AMPKalpha; (v) a stimulation in ACC activity despite increased AMPKalpha phosphorylation and protein expression; and (vi) a trend of increase in mRNA levels of key lipogenic enzymes [SCD-1 (stearoyl-CoA desaturase-1), mGPAT (mitochondrial isoform of glycerol-3-phosphate acyltransferase) and FAS (FA synthase)] and transcription factors [SREBP-1 (sterol-regulatory-element-binding protein-1) and ChREBP (carbohydrate responsive element-binding protein)]. Altogether, our findings suggest that up-regulation of the AMPK pathway seems to be a natural response in order to reduce lipid metabolism abnormalities, thus supporting the role of AMPK as a promising target for the treatment of TD2-associated dyslipidaemia.
Endocrinology | 2010
Emile Levy; Geneviève Lalonde; Edgard Delvin; Mounib Elchebly; Louis Philippe Precourt; Nabil G. Seidah; Schohraya Spahis; Rémi Rabasa-Lhoret; Ehud Ziv
Insulin resistance and type 2 diabetes (T2D) are characterized by hyperlipidemia. The aim of the present study was to elucidate whether T2D contributes to abnormal cholesterol (CHOL) homeostasis. Experiments were carried out in the small intestine and liver of Psammomys obesus, a model of nutritionally induced T2D. Our results show that diabetic animals exhibited a lower intestinal CHOL uptake, which was associated with a decrease in 1) the gene and protein expression of Niemann-Pick C1 like 1 that plays a pivotal role in CHOL incorporation in the enterocytes; and 2) mRNA of ATP-binding cassette transporters (ABC)A1 that mediates CHOL efflux from intestinal cells to apolipoprotein A-I and high-density lipoprotein. No changes were observed in the other intestinal transporters scavenger receptor-class B type I (SR-BI) and annexin 2. On the other hand, in diabetic animals, a significant mRNA decrease was noticed in intestinal ABCG5 and ABCG8 responsible for the secretion of absorbed CHOL back into the lumen. Furthermore, jejunal PCSK9 protein was diminished and low-density lipoprotein receptor was raised, along with a significant down-regulation in jejunal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in P. obesus with T2D. Finally, among the transcription factors tested, only an increase in liver X receptors alpha and a decrease in peroxisome proliferator-activated receptors delta/beta mRNAs were detected in the intestine. In the liver, there was 1) an augmentation in the protein mass of Niemann-Pick C1 like 1, SR-BI, and annexin 2; 2) an up-regulation of SR-BI mRNA; 3) a fall in ABCG8 protein content as well as in ABCG5 and ABCA1 mRNA; and 4) an augmentation in liver X receptors alpha and peroxisome proliferator-activated receptors beta/delta mRNA, together with a drop in sterol regulatory element binding protein-2 protein. Our findings show that the development in P. obesus with T2D modifies the whole intraenterocyte and hepatocyte machinery responsible for CHOL homeostasis.
Diabetologia | 2006
Emile Levy; Schohraya Spahis; Ehud Ziv; André Marette; Mounib Elchebly; Marie Lambert; Edgard Delvin
American Journal of Physiology-gastrointestinal and Liver Physiology | 2007
Emile Levy; Karine Trudel; Moise Bendayan; Ernest G. Seidman; Edgard Delvin; Mounib Elchebly; Jean Claude Lavoie; Louis Philippe Precourt; Devendra K. Amre; Daniel Sinnett
Blood | 2012
Kathleen Spring; Catherine Chabot; Simon Langlois; Line Lapointe; Nguyen Thu Ngan Trinh; Christine Caron; Jagoda K. Hebda; Julie Gavard; Mounib Elchebly; Isabelle Royal