Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mounika Kodali is active.

Publication


Featured researches published by Mounika Kodali.


Energy and Environmental Science | 2016

Iron based catalysts from novel low-cost organic precursors for enhanced oxygen reduction reaction in neutral media microbial fuel cells

Carlo Santoro; Alexey Serov; Lydia Stariha; Mounika Kodali; Jonathan Gordon; Sofia Babanova; Orianna Bretschger; Kateryna Artyushkova; Plamen Atanassov

Two iron-based platinum group metal-free catalysts for the oxygen reduction reaction (ORR) were synthesized from novel and low cost organic precursors named niclosamide and ricobendazole. These catalysts have been characterized, incorporated in a gas diffusional electrode and tested in “clean” conditions as well as in operating microbial fuel cell (MFC) for 32 days. Both catalysts demonstrated unprecedented performance yielding a power density 25% higher than that of platinum (Pt) and roughly 100% higher than activated carbon (AC) used as a control. Durability tests were performed and showed that Pt-based cathodes lost their activity within the first week of operation, reaching the level of the supporting AC-based electrode. Fe–ricobendazole, however, demonstrated the highest performance during the long-term study with a power density of 195 ± 7 μW cm−2 (day 2) that slightly decreased to 186 ± 9 μW cm−2 at day 29. Fe–niclosamide also outperformed Pt and AC but the power density roughly decreased with 20% for the 32 days of the study. Accelerated poisoning test using S2− as pollutant showed high losses in activity for Pt. Fe–niclosamide suffered higher losses compared to Fe–ricobendazole. Importantly, Fe–ricobendazole represents a 55-fold cost reduction compared to platinum.


Electrochimica Acta | 2017

Air breathing cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

Mounika Kodali; Carlo Santoro; Alexey Serov; Sadia Kabir; Kateryna Artyushkova; Ivana Matanovic; Plamen Atanassov

Graphical abstract


Journal of Power Sources | 2017

Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

Carlo Santoro; Mounika Kodali; Sadia Kabir; Francesca Soavi; Alexey Serov; Plamen Atanassov

Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm−2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm−2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14–25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm−2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an “apparent” capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm−2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm−2).


Applied Energy | 2017

Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content

Carlo Santoro; Fernando Benito Abad; Alexey Serov; Mounika Kodali; Kerry J. Howe; Francesca Soavi; Plamen Atanassov

Graphical abstract Supercapacitive Microbial Desalination Cell is here presented with unprecedented performances. Anode and cathode act as negative and positive electrode of an internal supercapacitor that is discharged and self-recharged. Maximum power of 3 W m−2 is recorded.


Journal of Power Sources | 2018

Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

Carlo Santoro; Santiago Rojas-Carbonell; Roxanne Awais; Rohan Gokhale; Mounika Kodali; Alexey Serov; Kateryna Artyushkova; Plamen Atanassov

Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm−2 to 214 ± 5 μW cm−2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.


Journal of Power Sources | 2018

Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs

Carlo Santoro; Mounika Kodali; Sergio Herrera; Alexey Serov; Ioannis Ieropoulos; Plamen Atanassov

Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e− transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm−2 and 10 mgcm−2. Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm−2 and 262 ± 4 μWcm−2 with catalyst loading of 0.1 mgcm−2 and 10 mgcm−2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.


Electrochimica Acta | 2018

Iron-Nicarbazin derived platinum group metal-free electrocatalyst in scalable-size air-breathing cathodes for microbial fuel cells

Benjamin Erable; Manon Oliot; Rémy Lacroix; Alain Bergel; Alexey Serov; Mounika Kodali; Carlo Santoro; Plamen Atanassov

In this work, a platinum group metal-free (PGM-free) catalyst based on iron as transitional metal and Nicarbazin (NCB) as low cost organic precursor was synthesized using Sacrificial Support Method (SSM). The catalyst was then incorporated into a large area air-breathing cathode fabricated by pressing with a large diameter pellet die. The electrochemical tests in abiotic conditions revealed that after a couple of weeks of successful operation, the electrode experienced drop in performances in reason of electrolyte leakage, which was not an issue with the smaller electrodes. A decrease in the hydrophobic properties over time and a consequent cathode flooding was suspected to be the cause. On the other side, in the present work, for the first time, it was demonstrated the proof of principle and provided initial guidance for manufacturing MFC electrodes with large geometric areas. The tests in MFCs showed a maximum power density of 1.85 W m−2. The MFCs performances due to the addition of Fe-NCB were much higher compared to the iron-free material. A numerical model using Nernst-Monod and Butler-Volmer equations were used to predict the effect of electrolyte solution conductivity and distance anode-cathode on the overall MFC power output. Considering the existing conditions, the higher overall power predicted was 3.6 mW at 22.2 S m−1 and at inter-electrode distance of 1 cm.


Scientific Reports | 2018

Ceramic Microbial Fuel Cells Stack: power generation in standard and supercapacitive mode

Carlo Santoro; Cristina Flores-Cadengo; Francesca Soavi; Mounika Kodali; Irene Merino-Jimenez; Iwona Gajda; John Greenman; Ioannis Ieropoulos; Plamen Atanassov

In this work, a microbial fuel cell (MFC) stack containing 28 ceramic MFCs was tested in both standard and supercapacitive modes. The MFCs consisted of carbon veil anodes wrapped around the ceramic separator and air-breathing cathodes based on activated carbon catalyst pressed on a stainless steel mesh. The anodes and cathodes were connected in parallel. The electrolytes utilized had different solution conductivities ranging from 2.0 mScm−1 to 40.1 mScm−1, simulating diverse wastewaters. Polarization curves of MFCs showed a general enhancement in performance with the increase of the electrolyte solution conductivity. The maximum stationary power density was 3.2 mW (3.2 Wm−3) at 2.0 mScm−1 that increased to 10.6 mW (10.6 Wm−3) at the highest solution conductivity (40.1 mScm−1). For the first time, MFCs stack with 1 L operating volume was also tested in supercapacitive mode, where full galvanostatic discharges are presented. Also in the latter case, performance once again improved with the increase in solution conductivity. Particularly, the increase in solution conductivity decreased dramatically the ohmic resistance and therefore the time for complete discharge was elongated, with a resultant increase in power. Maximum power achieved varied between 7.6 mW (7.6 Wm−3) at 2.0 mScm−1 and 27.4 mW (27.4 Wm−3) at 40.1 mScm−1.


Electrochimica Acta | 2018

Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst

Mounika Kodali; Sergio Herrera; Sadia Kabir; Alexey Serov; Carlo Santoro; Ioannis Ieropoulos; Plamen Atanassov

Iron aminoantipyrine (Fe-AAPyr), graphene nanosheets (GNSs) derived catalysts and their physical mixture Fe-AAPyr-GNS were synthesized and investigated as cathode catalysts for oxygen reduction reaction (ORR) with the activated carbon (AC) as a baseline. Fe-AAPyr catalyst was prepared by Sacrificial Support Method (SSM) with silica as a template and aminoantipyrine (AAPyr) as the organic precursor. 3D-GNS was prepared using modified Hummers method technique. The Oxygen Reduction Reaction (ORR) activity of these catalysts at different loadings was investigated by using rotating ring disk (RRDE) electrode setup in the neutral electrolyte. The performance of the catalysts integrated into air-breathing cathode was also investigated. The co-presence of GNS (2 mg cm−2) and Fe-AAPyr (2 mg cm−2) catalyst within the air-breathing cathode resulted in the higher power generation recorded in MFC of 235 ± 1 μW cm−2. Fe-AAPyr catalyst itself showed high performance (217 ± 1 μW cm−2), higher compared to GNS (150 ± 5 μW cm−2) while AC generated power of roughly 104 μW cm−2.


Journal of The Electrochemical Society | 2017

High Performance Platinum Group Metal-Free Cathode Catalysts for Microbial Fuel Cell (MFC)

Mounika Kodali; Rohan Gokhale; Carlo Santoro; Alexey Serov; Kateryna Artyushkova; Plamen Atanassov

Collaboration


Dive into the Mounika Kodali's collaboration.

Top Co-Authors

Avatar

Carlo Santoro

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey Serov

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ioannis Ieropoulos

University of the West of England

View shared research outputs
Top Co-Authors

Avatar

Rohan Gokhale

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Sadia Kabir

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Sergio Herrera

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Merino-Jimenez

University of the West of England

View shared research outputs
Researchain Logo
Decentralizing Knowledge