Mounir El Achaby
Center for Advanced Materials
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mounir El Achaby.
Carbohydrate Polymers | 2015
Nassima El Miri; Karima Abdelouahdi; Abdellatif Barakat; Mohamed Zahouily; Aziz Fihri; Abderrahim Solhy; Mounir El Achaby
This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications.
International Journal of Biological Macromolecules | 2017
Mounir El Achaby; Nassima El Miri; A. Aboulkas; Mohamed Zahouily; Essaid Bilal; Abdellatif Barakat; Abderrahim Solhy
Novel synthesis strategy of eco-friendly bio-nanocomposite films have been exploited using cellulose nanocrystals (CNC) and polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) blend matrix as a potential in food packaging application. The CNC were extracted from sugarcane bagasse using sulfuric acid hydrolysis, and they were successfully characterized regarding their morphology, size, crystallinity and thermal stability. Thereafter, PVA/CMC-CNC bio-nanocomposite films, at various CNC contents (0.5-10wt%), were fabricated by the solvent casting method, and their properties were investigated. It was found that the addition of 5wt% CNC within a PVA/CMC increased the tensile modulus and strength by 141% and 83% respectively, and the water vapor permeability was reduced by 87%. Additionally, the bio-nanocomposites maintained the same transparency level of the PVA/CMC blend film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale. In these bio-nanocomposites, the adhesion properties and the large number of functional groups that are present in the CNCs surface and the macromolecular chains of the PVA/CMC blend are exploited to improve the interfacial interactions between the CNC and the blend. Consequently, these eco-friendly structured bio-nanocomposites with superior properties are expected to be useful in food packaging applications.
Carbohydrate Polymers | 2016
Nassima El Miri; Mounir El Achaby; Aziz Fihri; Mohamed Larzek; Mohamed Zahouily; Karima Abdelouahdi; Abdellatif Barakat; Abderrahim Solhy
Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Youngs modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials.
International Journal of Biological Macromolecules | 2018
Mounir El Achaby; Zineb Kassab; A. Aboulkas; Cédric Gaillard; Abdellatif Barakat
Red algae is widely available around the world and its exploitation for the production of agar products has become an important industry in recent years. The industrial processing of red algae generates a large quantity of solid fibrous wastes, which constitutes a source of serious environmental problems. In the present work, the utilization of red algae waste as raw material to produce high-quality cellulose nanocrystals (CNC) has been investigated, and the ability of the as-isolated CNC to reinforce polymer has been studied. Red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments, in order to obtain pure cellulose microfibers and CNC. The raw waste and the as-extracted cellulosic materials were successively characterized at different stages of treatments using serval analysis techniques. It was found that needle-like shaped CNC were successfully isolated at nanometric scale with diameters and lengths ranged from 5.2±2.9 to 9.1±3.1nm, and from 285.4±36.5 to 315.7±30.3nm, respectively, and the crystallinity index ranged from 81 to 87%, depending on the hydrolysis time (30, 40 and 80min). The as-extracted CNC were used as nanofillers for the production of polyvinyl alcohol (PVA)-based nanocomposite films with improved thermal and tensile properties, as well as optical transparency. It is shown that the addition of 8wt% CNC into the PVA matrix increased the Youngs modulus by 215%, the tensile strength by 150%, and the toughness by 45%. Additionally, the nanocomposite films maintained the same transparency level of the neat PVA film (transmittance of ∼90% in the visible region), suggesting that the CNC were dispersed at the nanoscale.
Materials Science and Engineering: C | 2014
Walid Amer; Karima Abdelouahdi; Hugo Ronald Ramananarivo; Aziz Fihri; Mounir El Achaby; Mohamed Zahouily; Abdellatif Barakat; K. Djessas; James H. Clark; Abderrahim Solhy
In this report new hybrid materials based on brushite-alginate and monetite-alginate were prepared by self-assembling alginate chains and phosphate source ions via a gelation process with calcium ions. The alginate served as nanoreactor for nucleation and growth of brushite or/and monetite due to its gelling and swelling properties. The alginate gel framework, the crystalline phase and morphology of formed hybrid biomaterials were shown to be strongly dependent upon the concentration of the phosphate precursors. These materials were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX).
International Journal of Biological Macromolecules | 2018
Mounir El Achaby; Nassima El Miri; Hassan Hannache; Said Gmouh; Hicham Ben Youcef; A. Aboulkas
In the present work, cellulose nanocrystals (CNC) were produced from vine shoots waste using chemical treatments followed by acid hydrolysis process. FTIR analysis confirmed that the non-cellulosic components were progressively removed during the chemical treatments, and the final obtained materials are composed of pure cellulose. AFM and TEM observations showed that the extracted CNC possess a needle-like shape with an average length of 456 nm and an average diameter of 14 nm, giving rise to an average aspect ratio of about 32. The as-extracted CNC exhibit a cellulose I structure with high crystallinity index (82%), as determined by XRD characterization. Importantly, the resulted CNC provide a higher thermal stability in comparison with CNC extracted from other resources, using the same extraction process. The isolated CNCs surface charge density was evaluated by XPS analysis and resulted in ~2.0 sulfate groups per 100 anhydroglucose units. In order to identify the reinforcing ability of the new extracted CNC, Carboxymethyl cellulose nanocomposite films were prepared with various CNC contents (1, 3, 5, 8 wt%) and their mechanical properties were investigated by uniaxial tensile test. The results showed that the as-extracted CNC displayed a higher reinforcing ability for nanocomposite materials.
Journal of Applied Polymer Science | 2015
Nassima El Miri; Karima Abdelouahdi; Mohamed Zahouily; Aziz Fihri; Abdellatif Barakat; Abderrahim Solhy; Mounir El Achaby
Journal of Applied Polymer Science | 2014
Mounir El Achaby; Youness Essamlali; Nassima El Miri; Asmae Snik; Karima Abdelouahdi; Aziz Fihri; Mohamed Zahouily; Abderrahim Solhy
Journal of Applied Polymer Science | 2016
Mounir El Achaby; Nassima El Miri; Asmae Snik; Mohamed Zahouily; Karima Abdelouahdi; Aziz Fihri; Abdellatif Barakat; Abderrahim Solhy
Industrial Crops and Products | 2018
Mounir El Achaby; Zineb Kassab; Abdelatif Barakat; A. Aboulkas