Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moussa Benhamed is active.

Publication


Featured researches published by Moussa Benhamed.


Molecular Cell | 2014

Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop

Federico Ariel; Teddy Jégu; David Latrasse; Natali Romero-Barrios; Aurélie Christ; Moussa Benhamed; Martin Crespi

The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes.


Journal of Biological Chemistry | 2005

Arabidopsis HAF2 gene encoding TATA-binding protein (TBP)-associated factor TAF1, is required to integrate light signals to regulate gene expression and growth

Claire Bertrand; Moussa Benhamed; You-Fang Li; Mira Ayadi; Gaetan Lemonnier; Jean-Pierre Renou; Marianne Delarue; Dao-Xiu Zhou

Plant growth and development are sensitive to light. Light-responsive DNA-binding transcription factors have been functionally identified. However, how transcription initiation complex integrates light signals from enhancer-bound transcription factors remains unknown. In this work, we characterized mutations within the Arabidopsis HAF2 gene encoding TATA-binding protein-associated factor TAF1 (or TAFII250). The mutation of HAF2 induced decreases on chlorophyll accumulation, light-induced mRNA levels, and promoter activity. Genetic analysis indicated that HAF2 is involved in the pathways of both red/far-red and blue light signals. Double mutants between haf2-1 and hy5-1, a mutation of a light signaling positive DNA-binding transcription factor gene, had a synergistic effect on photomorphogenic traits and light-activated gene expression under different light wavelengths, suggesting that HAF2 is required for interaction with additional light-responsive DNA-binding transcription factors to fully respond to light induction. Chromatin immunoprecipitation assays showed that the mutation of HAF2 reduced acetylation of histone H3 in light-responsive promoters. In addition, transcriptome analysis showed that the mutation altered the expression of about 9% of genes in young leaves. These data indicate that TAF1 encoded by the Arabidopsis HAF2 gene functions as a coactivator capable of integrating light signals and acetylating histones to activate light-induced gene transcription.


The Plant Cell | 2014

ANGUSTIFOLIA3 Binds to SWI/SNF Chromatin Remodeling Complexes to Regulate Transcription during Arabidopsis Leaf Development

Liesbeth Vercruyssen; Aurine Verkest; Nathalie Gonzalez; Ken S. Heyndrickx; Dominique Eeckhout; Soon-Ki Han; Teddy Jégu; Rafal Archacki; Jelle Van Leene; Megan Andriankaja; Stefanie De Bodt; Thomas Abeel; Frederik Coppens; Stijn Dhondt; Liesbeth De Milde; Mattias Vermeersch; Katrien Maleux; Kris Gevaert; Andrzej Jerzmanowski; Moussa Benhamed; Doris Wagner; Klaas Vandepoele; Geert De Jaeger; Dirk Inzé

The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell division during Arabidopsis leaf development. It is shown that AN3 associates with SWI/SNF chromatin remodeling complexes to regulate the expression of important downstream transcription factors and that the module SWI/SNF-AN3 is a major player in the transition from cell division to cell expansion in developing leaves. The transcriptional coactivator ANGUSTIFOLIA3 (AN3) stimulates cell proliferation during Arabidopsis thaliana leaf development, but the molecular mechanism is largely unknown. Here, we show that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR2, CONSTANS-LIKE5 (COL5), HECATE1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED. Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoters of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.


Frontiers in Plant Science | 2015

To die or not to die? Lessons from lesion mimic mutants

Quentin Bruggeman; Cécile Raynaud; Moussa Benhamed; Marianne Delarue

Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting in an activation of finely controlled signaling pathways that lead to cellular suicide. Although some aspects of PCD control appear evolutionary conserved between plants, animals and fungi, the extent of conservation remains controversial. Over the last decades, identification and characterization of several lesion mimic mutants (LMM) has been a powerful tool in the quest to unravel PCD pathways in plants. Thanks to progress in molecular genetics, mutations causing the phenotype of a large number of LMM and their related suppressors were mapped, and the identification of the mutated genes shed light on major pathways in the onset of plant PCD such as (i) the involvements of chloroplasts and light energy, (ii) the roles of sphingolipids and fatty acids, (iii) a signal perception at the plasma membrane that requires efficient membrane trafficking, (iv) secondary messengers such as ion fluxes and ROS and (v) the control of gene expression as the last integrator of the signaling pathways.


The Plant Cell | 2014

The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at FLOWERING LOCUS C in Arabidopsis

Teddy Jégu; David Latrasse; Marianne Delarue; Heribert Hirt; Séverine Domenichini; Federico Ariel; Martin Crespi; Catherine Bergounioux; Cécile Raynaud; Moussa Benhamed

It is shown that BAF60, a subunit of the chromatin-remodeling complex SWI/SNF, induces a change in the floral repressor FLOWERING LOCUS C at the high-order chromatin level, thereby repressing the photoperiod flowering pathway in Arabidopsis. Specifically, BAF60 modulates histone density, composition, and posttranslational modification, thereby controlling gene loop formation at FLOWERING LOCUS C. SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit, and in this work, we show that BAF60, via a direct targeting of the floral repressor FLC, induces a change at the high-order chromatin level and represses the photoperiod flowering pathway in Arabidopsis. BAF60 accumulates in the nucleus and controls the formation of the FLC gene loop by modulation of histone density, composition, and posttranslational modification. Physiological analysis of BAF60 RNA interference mutant lines allowed us to propose that this chromatin-remodeling protein creates a repressive chromatin configuration at the FLC locus.


Trends in Plant Science | 2015

Battles and hijacks: noncoding transcription in plants

Federico Ariel; Natali Romero-Barrios; Teddy Jégu; Moussa Benhamed; Martin Crespi

Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.


Cell Research | 2009

Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis

Wanhui Kim; Moussa Benhamed; Caroline Servet; David Latrasse; Wei Zhang; Marianne Delarue; Dao-Xiu Zhou

MicroRNAs (miRNA) that guide sequence-specific posttranscriptional gene silencing play an important role in gene expression required for both developmental processes and responses to environmental conditions in plants. However, little is known about the transcriptional and posttranscriptional regulation of miRNA expression. Histone acetylation plays an important role in chromatin remodeling and is required for gene activation. By analyzing the accumulation of subset of miRNAs and the corresponding primary miRNAs in mutants of Arabidopsis, we show that histone acetyltransferase GCN5 (General control non-repressed protein5) has a general repressive effect on miRNA production, while it is required for the expression of a subset of (e.g. stress-inducible) MIRNA genes. The general negative function of GCN5 in miRNA production is likely achieved through an indirect repression of the miRNA machinery genes such as DICER LIKE1 (DCL1), SERRATE (SE), HYPONASTIC LEAVES1 (HYL1) and ARGONAUTE1 (AGO1). Chromatin immunoprecipitation assays revealed that GCN5 targets to a subset of MIRNA genes and is required for acetylation of histone H3 lysine 14 at these loci. Moreover, inhibition of histone deacetylation by trichostatin A treatment or in histone deacetylase gene mutants impaired the accumulation of certain miRNAs. These data together suggest that Arabidopsis GCN5 interferes with the miRNA pathway at both the transcriptional and posttranscriptional levels and histone acetylation/deacetylation is an epigenetic mechanism involved in the regulation of miRNA production.


Biochimica et Biophysica Acta | 2008

Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis.

Caroline Servet; Moussa Benhamed; David Latrasse; Wanhui Kim; Marianne Delarue; Dao-Xiu Zhou

Arabidopsis GCN5 is a major histone acetyltransferase. The mutation of the gene induces pleiotropic effects on plant development, and affects the expression of a large number of genes. The mechanism of action of this protein in controlling plant chromatin structure and genome expression is not understood. In this work, we report the identification of a number of potential protein interacting partners of GCN5 in Arabidopsis. In particular, GCN5 was shown to interact specifically with a phosphatase 2C protein (AtPP2C-6-6). GCN5 phosphorylated by activities in cellular extracts could be dephosphorylated by AtPP2C-6-6 in vitro. Analysis of T-DNA insertion mutants revealed a positive role of AtPP2C-6-6 in salt induction of stress-inducible genes, while the gcn5 mutation seemed to have no effect on the induction but showed up-regulation of a subset of the stress-inducible genes under non-induced conditions. In addition, the gcn5 mutation seriously reduced acetylation of histone H3K14 and H3K27, whereas the T-DNA insertions of the AtPP2C6-6 gene enhanced the acetylation of these lysine residues. Taken together, the present data suggest that AtPP2C-6-6 may function as a negative regulator of GCN5 activity in Arabidopsis.


Plant Physiology | 2013

Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation.

Teddy Jégu; David Latrasse; Marianne Delarue; Christelle Mazubert; Mickael Bourge; Elodie Hudik; Sophie Blanchet; Marie-Noëlle Soler; Céline Charon; Lieven De Veylder; Cécile Raynaud; Catherine Bergounioux; Moussa Benhamed

The cell cycle inhibitor KRP5 binds chromatin to coordinately control endoreduplication and chromatin structure and to allow the expression of genes required for cell elongation. Despite considerable progress in our knowledge regarding the cell cycle inhibitor of the Kip-related protein (KRP) family in plants, less is known about the coordination of endoreduplication and cell differentiation. In animals, the role of cyclin-dependent kinase (CDK) inhibitors as multifunctional factors coordinating cell cycle regulation and cell differentiation is well documented and involves not only the inhibition of CDK/cyclin complexes but also other mechanisms, among them the regulation of transcription. Interestingly, several plant KRPs have a punctuated distribution in the nucleus, suggesting that they are associated with heterochromatin. Here, one of these chromatin-bound KRPs, KRP5, has been studied in Arabidopsis (Arabidopsis thaliana). KRP5 is expressed in endoreduplicating cells, and loss of KRP5 function decreases endoreduplication, indicating that KRP5 is a positive regulator of endoreduplication. This regulation relies on several mechanisms: in addition to its role in cyclin/CDK kinase inhibition previously described, chromatin immunoprecipitation sequencing data combined with transcript quantification provide evidence that KRP5 regulates the transcription of genes involved in cell wall organization. Furthermore, KRP5 overexpression increases chromocenter decondensation and endoreduplication in the Arabidopsis trithorax-related protein5 (atxr5) atxr6 double mutant, which is deficient for the deposition of heterochromatin marks. Hence, KRP5 could bind chromatin to coordinately control endoreduplication and chromatin structure and allow the expression of genes required for cell elongation.


Plant Physiology | 2014

The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis

Quentin Bruggeman; Marie Garmier; Linda de Bont; Ludivine Soubigou-Taconnat; Christelle Mazubert; Moussa Benhamed; Cécile Raynaud; Catherine Bergounioux; Marianne Delarue

A mutation in the Arabidopsis mRNA polyadenylation factor suppresses the cell death associated with the immunity response mediated by salicylic acid and defective myoinositol biosynthesis. Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3′ end processing, through the regulation of SA production, is a key component of plant immune responses.

Collaboration


Dive into the Moussa Benhamed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Teddy Jégu

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Heribert Hirt

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Federico Ariel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge