Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moustafa Elkalaf is active.

Publication


Featured researches published by Moustafa Elkalaf.


PLOS ONE | 2015

Lipophilic Triphenylphosphonium Cations Inhibit Mitochondrial Electron Transport Chain and Induce Mitochondrial Proton Leak

Jan Trnka; Moustafa Elkalaf; Michal Anděl

Background The lipophilic positively charged moiety of triphenylphosphonium (TPP+) has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism. Methodology/Principal Findings We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity. Conclusions/Significance More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.


PLOS ONE | 2013

Low Glucose but Not Galactose Enhances Oxidative Mitochondrial Metabolism in C2C12 Myoblasts and Myotubes

Moustafa Elkalaf; Michal Anděl; Jan Trnka

Background Substituting galactose for glucose in cell culture media has been suggested to enhance mitochondrial metabolism in a variety of cell lines. We studied the effects of carbohydrate availability on growth, differentiation and metabolism of C2C12 myoblasts and myotubes. Methodology/Principal Findings We measured growth rates, ability to differentiate, citrate synthase and respiratory chain activities and several parameters of mitochondrial respiration in C2C12 cells grown in media with varying carbohydrate availability (5 g/l glucose, 1 g/l glucose, 1 g/l galactose, and no added carbohydrates). C2C12 myoblasts grow more slowly without glucose irrespective of the presence of galactose, which is not consumed by the cells, and they fail to differentiate without glucose in the medium. Cells grown in a no-glucose medium (with or without galactose) have lower maximal respiration and spare respiratory capacity than cells grown in the presence of glucose. However, increasing glucose concentration above physiological levels decreases the achievable maximal respiration. C2C12 myotubes differentiated at a high glucose concentration showed higher dependency on oxidative respiration under basal conditions but had lower maximal and spare respiratory capacity when compared to cells differentiated under low glucose condition. Citrate synthase activity or mitochondrial yield were not significantly affected by changes in the available substrate concentration but a trend towards a higher respiratory chain activity was observed at reduced glucose levels. Conclusions/Significance Our results show that using galactose to increase oxidative metabolism may not be applicable to every cell line, and the changes in mitochondrial respiratory parameters associated with treating cells with galactose are mainly due to glucose deprivation. Moderate concentrations of glucose (1 g/l) in a growth medium are optimal for mitochondrial respiration in C2C12 cell line while supraphysiological concentrations of glucose cause mitochondrial dysfunction in C2C12 myoblasts and myotubes.


Journal of Parenteral and Enteral Nutrition | 2015

Normalizing Glutamine Concentration Causes Mitochondrial Uncoupling in an In Vitro Model of Human Skeletal Muscle

Adéla Krajčová; Jakub Ziak; Katerina Jiroutkova; Jana Patková; Moustafa Elkalaf; Valer Dzupa; Jan Trnka; František Duška

BACKGROUND Glutamine has been considered essential for rapidly dividing cells, but its effect on mitochondrial function is unknown. MATERIALS AND METHODS Human myoblasts were isolated from skeletal muscle biopsy samples (n = 9) and exposed for 20 days to 6 different glutamine concentrations (0, 100, 200, 300, 500, and 5000 µM). Cells were trypsinized and manually counted every 5 days. Seven days before the end of exposure, half of these cells were allowed to differentiate to myotubes. Afterward, energy metabolism in both myotubes and myoblasts was assessed by extracellular flux analysis (Seahorse Biosciences, Billerica, MA). The protocol for myoblasts was optimized in preliminary experiments. To account for different mitochondrial density or cell count, data were normalized to citrate synthase activity. RESULTS Fastest myoblast proliferation was observed at 300 µM glutamine, with a significant reduction at 0 and 100 µM. Glutamine did not influence basal oxygen consumption, anaerobic glycolysis or respiratory chain capacity. Glutamine significantly (P = .015) influenced the leak through the inner mitochondrial membrane. Efficiency of respiratory chain was highest at 200-300 µM glutamine (~90% of oxygen used for adenosine triphosphate synthesis). Increased glutamine concentration to 500 or 5000 µM caused mitochondrial uncoupling in myoblasts and myotubes, decreasing the efficiency of the respiratory chain to ~70%. CONCLUSION Glutamine concentrations, consistent with moderate clinical hypoglutaminemia (300 µM), bring about an optimal condition of myoblast proliferation and for efficiency of aerobic phosphorylation in an in vitro model of human skeletal muscle. These data support the hypothesis of hypoglutaminemia as an adaptive phenomenon in conditions leading to bioenergetic failure (eg, critical illness).


Biochemical and Biophysical Research Communications | 2016

Adipogenesis, lipogenesis and lipolysis is stimulated by mild but not severe hypoxia in 3T3-L1 cells

Martin Weiszenstein; Martina Musutova; Andrea Plihalova; Katerina Westlake; Moustafa Elkalaf; Michal Koc; Antonin Prochazka; Jan Pala; Sumeet Gulati; Jan Trnka; Jan Polak

In-vitro investigation of the effects of hypoxia is limited by physical laws of gas diffusion and cellular O2 consumption, making prolonged exposures to stable O2 concentrations impossible. Using a gas-permeable cultureware, chronic effects of mild and severe hypoxia on triglyceride accumulation, lipid droplet size distribution, spontaneous lipolysis and gene expression of adipocyte-specific markers were assessed. 3T3-L1 cells were differentiated under 20%, 4% or 1% O2 using a gas-permeable cultureware. Triglyceride accumulation, expression of genes characteristic for advanced adipocyte differentiation and involvement of key lipogenesis enzymes were assessed after exposures. Lipogenesis increased by 375% under mild hypoxia, but dropped by 43% in severe hypoxia. Mild, but not severe, hypoxia increased formation of large lipid droplets 6.4 fold and strongly induced gene expression of adipocyte-specific markers. Spontaneous lipolysis increased by 488% in mild, but only by 135% in severe hypoxia. Inhibition of ATP-dependent citrate lyase suppressed hypoxia-induced lipogenesis by 81% and 85%. Activation of HIF inhibited lipogenesis by 59%. Mild, but not severe, hypoxia stimulates lipolysis and promotes adipocyte differentiation, probably through excess of acetyl-CoA originating from tricarboxylic acid cycle independently of HIF activation.


Cellular & Molecular Biology Letters | 2015

The effect of cultureware surfaces on functional and structural components of differentiated 3T3-L1 preadipocytes.

Nela Pavlikova; Martin Weiszenstein; Jan Pala; Petr Halada; Ondrej Seda; Moustafa Elkalaf; Jan Trnka; Jan Kovar; Jan Polak

Abstract Experiments using cultured primary cells or cell lines are a routine in vitro approach used across multiple biological disciplines, However, the structural and functional influences of various cultureware materials on cultured cells is not clearly understood. Surface treatments of cultureware have proven to have profound effects on cell viability and proliferation. In this study, we investigated the impact of polystyrene and fluorocarbon cultureware dishes on the proteomic profile of differentiated 3T3-L1 preadipocytes. After expansion and differentiation of cells on appropriate cultureware dishes, cell lysates were separated using two-dimensional gel electrophoresis and proteins were visualized with Coomassie blue staining. Spots with the highest differential expression between the two culture conditions were subsequently analyzed using matrix-assisted laser desorption/ionization mass spectrometry and the identified proteins were subjected to pathway analysis. We observed that 43% of all spots were differentially expressed depending on the cultureware. Pathway analysis revealed that glucose metabolism, mitochondrial structure and cell differentiation, represented by 14-3-3 protein-mediated signaling and the mitochondrial inner membrane organizing system (MINOS), were significantly affected by cultureware material. These results indicate that cultureware material can have a profound effect on key adipocyte functional pathways. These effects modifications of the cells should be reflected in the design of in vitro experiments and interpretation of their results.


European Journal of Clinical Nutrition | 2017

Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores

Jan Gojda; L Rossmeislová; R Straková; J Tůmová; Moustafa Elkalaf; M Jaček; Petr Tůma; J Potočková; E Krauzová; Petr Waldauf; Jan Trnka; V Štich; Michal Anděl

Background/Objectives:Branched chain amino acids (BCAA) are among nutrients strongly linked with insulin sensitivity (IS) measures. We investigated the effects of a chronic increase of BCAA intake on IS in two groups of healthy subjects differing in their basal consumption of BCAA, that is, vegans and omnivores.Subjects/Methods:Eight vegans and eight matched omnivores (five men and three women in each group) received 15 g (women) or 20 g (men) of BCAA daily for 3 months. Anthropometry, blood analyses, glucose clamp, arginine test, subcutaneous abdominal adipose tissue (AT) and skeletal muscle (SM) biopsies (mRNA levels of selected metabolic markers, respiratory chain (RC) activity) were performed at baseline, after the intervention and after a 6 month wash-out period.Results:Compared with omnivores, vegans had higher IS at baseline (GIR, glucose infusion rate: 9.6±2.4 vs 7.1±2.4 mg/kg/min, 95% CI for difference: 0.55 to 5.82) that declined after the intervention and returned to baseline values after the wash-out period (changes in GIR with 95% CI, 3–0 months: −1.64 [−2.5; −0.75] and 9-3 months: 1.65 [0.75; 2.54] mg/kg/min). No such change was observed in omnivores. In omnivores the intervention led to an increased expression of lipogenic genes (DGAT2, FASN, PPARγ, SCD1) in AT. SM RC activity increased in both groups.Conclusions:Negative impact of increased BCAA intake on IS was only detected in vegans, that is, subjects with low basal amino acids/BCAA intake, which appear to be unable to induce sufficient compensatory changes within AT and SM on a BCAA challenge.


PLOS ONE | 2016

The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

Martin Weiszenstein; Nela Pavlikova; Moustafa Elkalaf; Petr Halada; Ondrej Seda; Jan Trnka; Jan Kovar; Jan Polak

Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2) on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated). Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.


Critical Care Medicine | 2017

Effects of Propofol on Cellular Bioenergetics in Human Skeletal Muscle Cells

Adéla Krajčová; Nils Gunnar Løvsletten; Petr Waldauf; Vladimír Frič; Moustafa Elkalaf; Tomáš Urban; Michal Anděl; Jan Trnka; G. Hege Thoresen; František Duška

Objectives: Propofol may adversely affect the function of mitochondria and the clinical features of propofol infusion syndrome suggest that this may be linked to propofol-related bioenergetic failure. We aimed to assess the effect of therapeutic propofol concentrations on energy metabolism in human skeletal muscle cells. Design: In vitro study on human skeletal muscle cells. Settings: University research laboratories. Subjects: Patients undergoing hip surgery and healthy volunteers. Interventions: Vastus lateralis biopsies were processed to obtain cultured myotubes, which were exposed to a range of 1–10 &mgr;g/mL propofol for 96 hours. Measurements and Main Results: Extracellular flux analysis was used to measure global mitochondrial functional indices, glycolysis, fatty acid oxidation, and the functional capacities of individual complexes of electron transfer chain. In addition, we used [1-14C]palmitate to measure fatty acid oxidation and spectrophotometry to assess activities of individual electron transfer chain complexes II–IV. Although cell survival and basal oxygen consumption rate were only affected by 10 &mgr;g/mL of propofol, concentrations as low as 1 &mgr;g/mL reduced spare electron transfer chain capacity. Uncoupling effects of propofol were mild, and not dependent on concentration. There was no inhibition of any respiratory complexes with low dose propofol, but we found a profound inhibition of fatty acid oxidation. Addition of extra fatty acids into the media counteracted the propofol effects on electron transfer chain, suggesting inhibition of fatty acid oxidation as the causative mechanism of reduced spare electron transfer chain capacity. Whether these metabolic in vitro changes are observable in other organs and at the whole-body level remains to be investigated. Conclusions: Concentrations of propofol seen in plasma of sedated patients in ICU cause a significant inhibition of fatty acid oxidation in human skeletal muscle cells and reduce spare capacity of electron transfer chain in mitochondria.


Frontiers in Endocrinology | 2018

The Effect of Hypoxia and Metformin on Fatty Acid Uptake, Storage, and Oxidation in L6 Differentiated Myotubes

Martina Musutova; Moustafa Elkalaf; Natalie Klubickova; Michal Koc; Stanislav Povysil; Jan Rambousek; Beatriz Volckaert; František Duška; Minh Duc Trinh; Martin Kalous; Jan Trnka; Kamila Balusikova; Jan Kovar; Jan Polak

Metabolic impairments associated with obstructive sleep apnea syndrome (OSA) are linked to tissue hypoxia, however, the explanatory molecular and endocrine mechanisms remain unknown. Using gas-permeable cultureware, we studied the chronic effects of mild and severe hypoxia on free fatty acid (FFA) uptake, storage, and oxidation in L6 myotubes under 20, 4, or 1% O2. Additionally, the impact of metformin and the peroxisome proliferator-activated receptor (PPAR) β/δ agonist, called GW501516, were investigated. Exposure to mild and severe hypoxia reduced FFA uptake by 37 and 32%, respectively, while metformin treatment increased FFA uptake by 39% under mild hypoxia. GW501516 reduced FFA uptake under all conditions. Protein expressions of CD36 (cluster of differentiation 36) and SCL27A4 (solute carrier family 27 fatty acid transporter, member 4) were reduced by 17 and 23% under severe hypoxia. Gene expression of UCP2 (uncoupling protein 2) was reduced by severe hypoxia by 81%. Metformin increased CD36 protein levels by 28% under control conditions and SCL27A4 levels by 56% under mild hypoxia. Intracellular lipids were reduced by mild hypoxia by 18%, while in controls only, metformin administration further reduced intracellular lipids (20% O2) by 36%. Finally, palmitate oxidation was reduced by severe hypoxia, while metformin treatment reduced non-mitochondrial O2 consumption, palmitate oxidation, and proton leak at all O2 levels. Hypoxia directly reduced FFA uptake and intracellular lipids uptake in myotubes, at least partially, due to the reduction in CD36 transporters. Metformin, but not GW501516, can increase FFA uptake and SCL27A4 expression under mild hypoxia. Described effects might contribute to elevated plasma FFA levels and metabolic derangements in OSA.


EMBO Reports | 2017

Metabolic stress regulates ERK activity by controlling KSR‐RAF heterodimerization

Amandine Verlande; Michaela Krafčíková; David Potěšil; Lukáš Trantírek; Zbyněk Zdráhal; Moustafa Elkalaf; Jan Trnka; Karel Souček; Nora Rauch; Jens Rauch; Walter Kolch; Stjepan Uldrijan

Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAFV600E‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.

Collaboration


Dive into the Moustafa Elkalaf's collaboration.

Top Co-Authors

Avatar

Jan Trnka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Polak

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

František Duška

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Martin Weiszenstein

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Michal Anděl

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Adéla Krajčová

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Kovar

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Petr Waldauf

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jakub Ziak

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Jan Gojda

Charles University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge