Moustafa Malki
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moustafa Malki.
Biosensors and Bioelectronics | 2010
Sofía Carbajosa; Moustafa Malki; Renaud Caillard; María Francisca López; F. Javier Palomares; José A. Martín-Gago; Nuria Rodríguez; Ricardo Amils; Victor M. Fernandez; Antonio L. De Lacey
An aspect in microbial fuel cell research that is currently of great interest is the development of bacterial cathodes. Bacterial cathodes that catalyze oxygen reduction to water at low pH have the advantage of overcoming the kinetic limitations due to the requirement of 4 protons per molecule reduced. In this work we have studied the performance of a biocathode using as electrocatalyst an acidophile microorganism: Acidithiobacillus ferrooxidans. Growth of the microorganism directly on the electrode took place using an applied voltage of 0 V vs. SCE as the only energy source and without adding redox mediators to the solution. Current densities of up to 5 A m(-2) were measured for O2 reduction in the At. ferrooxidans cathode at pH 2.0 and the electrocatalytic wave was shifted 300 mV to higher potential compared to the control graphite electrodes without the bacterium.
Applied and Environmental Microbiology | 2008
Moustafa Malki; Antonio L. De Lacey; Nuria Rodríguez; Ricardo Amils; Victor M. Fernandez
ABSTRACT Several anaerobic metal-reducing bacteria have been shown to be able to donate electrons directly to an electrode. This property is of great interest for microbial fuel cell development. To date, microbial fuel cell design requires avoiding O2 diffusion from the cathodic compartment to the sensitive anodic compartment. Here, we show that Acidiphilium sp. strain 3.2 Sup 5 cells that were isolated from an extreme acidic environment are able to colonize graphite felt electrodes. These bacterial electrodes were able to produce high-density electrocatalytic currents, up to 3 A/m2 at a poised potential of +0.15 V (compared to the value for the reference standard calomel electrode) in the absence of redox mediators, by oxidizing glucose even at saturating air concentrations and very low pHs.
International Microbiology | 2011
Juan García-Muñoz; Ricardo Amils; Victor M. Fernandez; Antonio L. De Lacey; Moustafa Malki
The attachment of microorganisms to electrodes is of great interest for electricity generation in microbial fuel cells (MFC) or other applications in bioelectrochemical systems (BES). In this work, a microcosm of the acidic ecosystem of Río Tinto was built and graphite electrodes were introduced at different points. This allowed the study of electricity generation in the sediment/water interface and the involvement of acidophilic microorganisms as biocatalysts of the anodic and cathodic reactions in a fuel-cell configuration. Current densities and power outputs of up to 3.5 A/m² and 0.3 W/m², respectively, were measured at pH 3. Microbial analyses of the electrode surfaces showed that Acidiphilium spp., which uses organic compounds as electron donors, were the predominant biocatalysts of the anodic reactions, whereas the aerobic iron oxidizers Acidithiobacillus ferrooxidans and Leptospirillum spp. were detected mainly on the cathode surface.
Journal of Environmental Sciences-china | 2010
Adil Essahale; Moustafa Malki; Irma Marín; Mohieddine Moumni
Tannery wastewater causes serious ecological and sanitary damage. Chemical analysis of water from Binlamdoune River of the medina of Fez was conducted and the results revealed the presence of toxic elements from tanneries and other industrial activities, which strongly affected water quality. To determine the effectiveness of bioremediation for depollution, we studied the abundance and diversity of bacteria residing in these polluted environments. Conducting denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S rDNA area using primers related to bacteria showed a bacterial community belonging to eubacterial groups, that is, Epsilonproteobacteria, Clostridia, Lactobacillales, Bacteroidetes, Gammaproteobacteria, and Alphaproteobacteria. In addition, cloning displayed the presence of clones belonging to the Firmicutes group. Moreover, scanning electron microscopy revealed a significant heterogeneity of microorganism forms and structures. These endogenous microbes could have a significant role in the purification of Binlamdoune River and Fez tannery wastewater.
Journal of Analytical Atomic Spectrometry | 2011
R. Fernández-Ruiz; Moustafa Malki; Ana Morato; Irma Marín
Total Reflection X-Ray Fluorescence (TXRF) has been applied for the first time to evaluate the kinetic behavior of the Cr(VI) bioaccumulation process that the recently isolated bacterium, named ANCR (Acinetobacter beijerinckii type), presents. First, a qualitative study of the bacterium elemental profile detected by TXRF has been carried out. Second, detection limits and the uncertainty of the technique were evaluated for this case. Finally, an experiment was designed to evaluate the behavior of the chromium content by two ways: in the cultured medium of the experiment, evaluating its decrease, and bioaccumulated in the bacteria, evaluating its increase. The results demonstrate that this new strain of Acinetobacter bacterium is able to reduce the chromium present in the culture medium. As a consequence, it can be used as a promising microorganism for Cr(VI) bioremediation from polluted wastewaters. Finally, TXRF has shown its versatility, potential and sensitivity for the analytical evaluation of toxic metals in this kind of microbiological system.
ChemPhysChem | 2013
Moustafa Malki; Santiago Casado; María Francisca López; Renaud Caillard; F. Javier Palomares; José A. Martín Gago; Cristina Vaz-Domínguez; Angel Cuesta; Ricardo Amils; Victor M. Fernandez; Marisela Vélez; Antonio L. De Lacey; David Olea
The biofilm formation of a strain of the extremophile bacterium Acidiphilium sp., capable of donating electrons directly to electrodes, was studied by different surface characterization techniques. We develop a method that allows the simultaneous study of bacterial biofilms by means of fluorescence microscopy and atomic force microscopy (AFM), in which transparent graphitic flakes deposited on a glass substrate are used as a support for the biofilm. The majority of the cells present on the surface were viable, and the growth of the biofilms over time showed a critical increase of the extracellular polymeric substances (EPS) as well as the formation of nanosized particles inside the biofilm. Also, the presence of Fe in Acidiphilium biofilms was determined by X-ray photoelectron spectroscopy (XPS), whereas surface-enhanced infrared absorption spectroscopy indicated the presence of redox-active proteins.
PLOS ONE | 2017
Kristina Beblo-Vranesevic; Maria Bohmeier; Alexandra K. Perras; Petra Schwendner; Elke Rabbow; Christine Moissl-Eichinger; Charles S. Cockell; Rüdiger Pukall; Pauline Vannier; Viggo Marteinsson; E. Monaghan; Pascale Ehrenfreund; L. Garcia-Descalzo; Felipe Gómez; Moustafa Malki; Ricardo Amils; Frédéric Gaboyer; Frances Westall; Patricia Cabezas; Nicolas Walter; Petra Rettberg
The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today.
International Journal of Astrobiology | 2017
Charles S. Cockell; Petra Schwendner; Alexandra K. Perras; Petra Rettberg; K. Beblo-Vranesevic; Maria Bohmeier; Elke Rabbow; Christine Moissl-Eichinger; L. Wink; V. Marteinsson; P. Vannier; Felipe Gómez; L. Garcia-Descalzo; Pascale Ehrenfreund; E. Monaghan; Frances Westall; Frédéric Gaboyer; Ricardo Amils; Moustafa Malki; Rüdiger Pukall; Patricia Cabezas; Nicolas Walter
Astrobiology seeks to understand the limits of life and to determine the physiology of organisms in order to better assess the habitability of other worlds. To successfully achieve these goals we require microorganisms from environments on Earth that approximate to extraterrestrial environments in terms of physical and/or chemical conditions. The most challenging of these environments with respect to sample collection, isolation and cultivation of microorganisms are anoxic environments. In this paper, an approach to this challenge was implemented within the European Unions MASE (Mars Analogues for Space Exploration) project. In this review paper, we aim to provide a set of methods for future field work and sampling campaigns. A number of anoxic environment based on characteristics that make them analogous to past and present locations on Mars were selected. They included anoxic sulphur-rich springs (Germany), the salt-rich Boulby Mine (UK), a lake in a basaltic context (Iceland), acidic sediments in the Rio Tinto (Spain), glacier samples (Austria) and permafrost samples (Russia and Canada). Samples were collected under strict anoxic conditions to be used for cultivation and genomic community analysis. Using the samples, a culturing approach was implemented to enrich anaerobic organisms using a defined medium that would allow for organisms to be grown under identical conditions in future physiological comparisons. Anaerobic microorganisms were isolated and deposited with the DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) culture collection to make them available to other scientists. In MASE, the selected organisms are studied with respect to survival and growth under Mars relevant stresses. They are artificially fossilized and the resulting biosignatures studied and used to investigate the efficacy of life detection instrumentation for planetary missions. Some of the organisms belong to genera with medical and environmental importance such as Yersinia spp., illustrating how astrobiology field research can be used to increase the availability of microbial isolates for applied terrestrial purposes.
Methods in Microbiology | 2006
Elena González-Toril; Felipe Gómez; Moustafa Malki; Ricardo Amils
Publisher Summary This chapter describes the methodologies, conventional as well as molecular, used to characterize the microbial diversity existing in the extreme acidic environment of the Tinto river. These methodologies are adapted from different sources. Most of the protocols are useful for other acidic environments, although the importance of small variables in these systems (pH, temperature, redox potential, metal concentrations, etc.) should be kept in mind and optimization is strongly recommended, especially in the use of molecular ecology tools. Most of the characterized strict acidophilic micro-organisms have been isolated from volcanic areas or acid mine drainage from mining activities. The acidity in these locations is derived from the microbial oxidation of elemental sulfur. In acidic, metal-rich environments associated with mining activities, the metal and coal mining operations expose sulfidic minerals to the combined action of water and oxygen, which facilitate microbial attack, producing the so-called acid mine drainage, a serious environmental problem. The main role of acidophilic chemolithotrophic micro-organisms is to maintain a high concentration of the chemical oxidant, ferric iron, in solution.
Frontiers in Microbiology | 2018
Petra Schwendner; Maria Bohmeier; Petra Rettberg; Kristina Beblo-Vranesevic; Frédéric Gaboyer; Christine Moissl-Eichinger; Alexandra K. Perras; Pauline Vannier; V. Marteinsson; L. Garcia-Descalzo; F. Gomez; Moustafa Malki; Ricardo Amils; Frances Westall; Andreas Riedo; E. Monaghan; Pascale Ehrenfreund; Patricia Cabezas; Nicolas Walter; Charles S. Cockell
Growth in sodium chloride (NaCl) is known to induce stress in non-halophilic microorganisms leading to effects on the microbial metabolism and cell structure. Microorganisms have evolved a number of adaptations, both structural and metabolic, to counteract osmotic stress. These strategies are well-understood for organisms in NaCl-rich brines such as the accumulation of certain organic solutes (known as either compatible solutes or osmolytes). Less well studied are responses to ionic environments such as sulfate-rich brines which are prevalent on Earth but can also be found on Mars. In this paper, we investigated the global metabolic response of the anaerobic bacterium Yersinia intermedia MASE-LG-1 to osmotic salt stress induced by either magnesium sulfate (MgSO4) or NaCl at the same water activity (0.975). Using a non-targeted mass spectrometry approach, the intensity of hundreds of metabolites was measured. The compatible solutes L-asparagine and sucrose were found to be increased in both MgSO4 and NaCl compared to the control sample, suggesting a similar osmotic response to different ionic environments. We were able to demonstrate that Yersinia intermedia MASE-LG-1 accumulated a range of other compatible solutes. However, we also found the global metabolic responses, especially with regard to amino acid metabolism and carbohydrate metabolism, to be salt-specific, thus, suggesting ion-specific regulation of specific metabolic pathways.