Moustafa R. K. Ali
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moustafa R. K. Ali.
Journal of Physical Chemistry B | 2014
Megan A. Mackey; Moustafa R. K. Ali; Lauren A. Austin; Rachel D. Near; Mostafa A. El-Sayed
The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution.
Journal of the American Chemical Society | 2014
Moustafa R. K. Ali; Sajanlal R. Panikkanvalappil; Mostafa A. El-Sayed
To minimize the toxicity of gold nanoparticles (AuNPs) in cancer treatment, we have developed a technique, which utilizes lesser amount of AuNPs while exhibiting increased treatment efficiency. Rifampicin (RF) is known for its ability to enhance the accumulation of anticancer drugs in multidrug resistant (MDR) cancer cells. In this work we have shown that RF-conjugated AuNPs can greatly enhance the rate as well as efficiency of endocytosis of NPs and hence their concentration inside the cancer cell. Cell viability results showed a remarkable enhancement in the photothermal therapeutic effect of Au nanorods in presence of RF. This is expected to decrease the demand on the overall amount of AuNPs needed for treating cancer and thus decreasing its toxicity.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Moustafa R. K. Ali; Mohammad Aminur Rahman; Yue Wu; Tiegang Han; Xianghong Peng; Megan A. Mackey; Dongsheng Wang; Hyung Ju C. Shin; Zhuo Georgia Chen; Haopeng Xiao; Ronghu Wu; Yan Tang; Dong M. Shin; Mostafa A. El-Sayed
Significance This is a systematic in vivo study of gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) for cancer. We have optimized the properties of our AuNRs and the conditions of PPTT to achieve maximal induction of tumor apoptosis. To examine the molecular mechanisms of action of AuNRs-PPTT, we used quantitative proteomics to study protein expression levels in mouse tumor tissues and found the apoptosis pathway to be significantly perturbed. We report a long-term toxicity study (up to 15 months in the mouse model) that showed no toxicity of the AuNRs. Together, these data suggest that our AuNRs-PPTT has potential as an approach to cancer therapy. Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin (RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse models. These findings provide a strong framework for the translation of PPTT to the clinic.
ACS Nano | 2017
Moustafa R. K. Ali; Yue Wu; Deepraj Ghosh; Brian H. Do; Kuangcai Chen; Michelle R. Dawson; Ning Fang; Todd Sulchek; Mostafa A. El-Sayed
Most cancer patients die from metastasis. Recent studies have shown that gold nanoparticles (AuNPs) can slow down the migration/invasion speed of cancer cells and suppress metastasis. Since nuclear stiffness of the cell largely decreases cell migration, our hypothesis is that targeting AuNPs to the cell nucleus region could enhance nuclear stiffness, and therefore inhibit cell migration and invasion. Our results showed that upon nuclear targeting of AuNPs, the ovarian cancer cell motilities decrease significantly, compared with nontargeted AuNPs. Furthermore, using atomic force microscopy, we observed an enhanced cell nuclear stiffness. In order to understand the mechanism of cancer cell migration/invasion inhibition, the exact locations of the targeted AuNPs were clearly imaged using a high-resolution three-dimensional imaging microscope, which showed that the AuNPs were trapped at the nuclear membrane. In addition, we observed a greatly increased expression level of lamin A/C protein, which is located in the inner nuclear membrane and functions as a structural component of the nuclear lamina to enhance nuclear stiffness. We propose that the AuNPs that are trapped at the nuclear membrane both (1) add to the mechanical stiffness of the nucleus and (2) stimulate the overexpression of lamin A/C located around the nuclear membrane, thus increasing nuclear stiffness and slowing cancer cell migration and invasion.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Moustafa R. K. Ali; Yue Wu; Yan Tang; Haopeng Xiao; Kuangcai Chen; Tiegang Han; Ning Fang; Ronghu Wu; Mostafa A. El-Sayed
Significance Metastasis is the primary cause of cancer-related deaths. Current clinical treatments for antimetastasis, however, are not effective. This work aims to develop a strategy to inhibit cancer cell migration using gold nanorods (AuNRs) with systematic understanding of the mechanism. The ability of targeting AuNRs to cancer cell surface integrins and the introduction of NIR light to generate a mild plasmonic photothermal effect caused broad regulation on cytoskeletal proteins, thus impairing cancer cell migration. This strategy provides a potential application for controlling cancer metastasis. Metastasis is responsible for most cancer-related deaths, but the current clinical treatments are not effective. Recently, gold nanoparticles (AuNPs) were discovered to inhibit cancer cell migration and prevent metastasis. Rationally designed AuNPs could greatly benefit their antimigration property, but the molecular mechanisms need to be explored. Cytoskeletons are cell structural proteins that closely relate to migration, and surface receptor integrins play critical roles in controlling the organization of cytoskeletons. Herein, we developed a strategy to inhibit cancer cell migration by targeting integrins, using Arg–Gly–Asp (RGD) peptide-functionalized gold nanorods. To enhance the effect, AuNRs were further activated with 808-nm near-infrared (NIR) light to generate heat for photothermal therapy (PPTT), where the temperature was adjusted not to affect the cell viability/proliferation. Our results demonstrate changes in cell morphology, observed as cytoskeleton protrusions—i.e., lamellipodia and filopodia—were reduced after treatment. The Western blot analysis indicates the downstream effectors of integrin were attracted toward the antimigration direction. Proteomics results indicated broad perturbations in four signaling pathways, Rho GTPases, actin, microtubule, and kinases-related pathways, which are the downstream regulators of integrins. Due to the dominant role of integrins in controlling cytoskeleton, focal adhesion, actomyosin contraction, and actin and microtubule assembly have been disrupted by targeting integrins. PPTT further enhanced the remodeling of cytoskeletal proteins and decreased migration. In summary, the ability of targeting AuNRs to cancer cell integrins and the introduction of PPTT stimulated broad regulation on the cytoskeleton, which provides the evidence for a potential medical application for controlling cancer metastasis.
International Journal of Nanomedicine | 2016
Moustafa R. K. Ali; Ibrahim M. Ibrahim; Hala R. Ali; Salah A. Selim; Mostafa A. El-Sayed
Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment.
Nanomedicine: Nanotechnology, Biology and Medicine | 2016
Ahmed S. Abdoon; Emad A. Al-Ashkar; Omaima M. Kandil; Ahmed M. Shaban; Hussein Khaled; Moustafa A. El Sayed; Marwa M. El Shaer; Asharaf H. Shaalan; Wael H. Eisa; Amina A. Gamal Eldin; Hany A. Hussein; Mohammad R. El Ashkar; Moustafa R. K. Ali; Ali A. Shabaka
Plasmonic photothermal therapy (PPTT) was introduced as a promising treatment of cancer. This work was conducted to evaluate the cytotoxic effect of intratumoral (IT) injection of 75μg gold nanorods (GNRs)/kg of body weight followed by direct exposure to 2 w/cm2 near infra-red laser light for 10min on ablation of mammary tumor in 10 dogs and 6 cats. Complete blood count (CBC), liver and kidney function were checked before the start of treatment and one month after injection of GNRs. Results showed that 62.5% (10/16), 25% (4/16) and 12.5% (2/16) of treated animals showed complete remission, partial remission and no response, respectively. Tumor was relapsed in 4 cases of initially responding animals (25%). Overall survival rate was extended to 315.5±20.5days. GNRs have no toxic effect on blood profile, liver or kidney functions. In conclusion, GNRs can be safely used for treatment of mammary tumors in dogs and cats.
Journal of Photochemistry and Photobiology B-biology | 2016
Mahmoud T. Abo-Elfadl; Amira M. Gamal-Eldeen; Mostafa M. El-Shafey; Gamil M. Abdalla; Shawkey S. Ali; Moustafa R. K. Ali; M.F. Zawrah
BACKGROUND The photothermal properties of gold nanoparticles (GNPs) are promising therapeutic modality for cancer. The study objective is to evaluate the therapeutic effect of the prepared PEGylated gold nano-semicubes (PEG-GNSCs) in skin cancer. The synthesized PEG-GNSCs were intermediate between cubic and rod shapes (low aspect ratio- rods). METHODS In vitro toxicity was investigated in human skin melanoma Sk-Mel-28 cells, and skin squamous cell carcinoma was induced in CD1 mice by dimethylbenzanthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA). RESULTS The calculated IC50 in Sk-Mel-28 cells was 3.41μg/ml of PEG-GNSCs, in presence of laser exposure. Photothermal therapy using laser-stimulated PEG-GNSCs resulted in inhibited volume of skin tumors. Our findings indicated that the inflammatory mediators, nitric oxide and cycloxygenase-2, were inhibited in mice after being treated with low and high doses of PEG-GNSCs, accompanied with laser exposure. However, the tumor necrosis factor -α was markedly elevated, while there was no change in 5-lipoxygenase. The pro-angiogenic factor vascular endothelial growth factor was inhibited, while histone acetylation and apoptosis were induced in tumor-bearing groups, after being treated with laser-stimulated PEG-GNSCs. CONCLUSION The present study indicated the promising photothermal therapeutic effect of laser-stimulated PEG-GNSCs as an effective modality to inhibit the tumor growth, the angiogenesis and partially the inflammation.
ACS Nano | 2018
Yue Wu; Moustafa R. K. Ali; Bin Dong; Tiegang Han; Kuangcai Chen; Jin Chen; Yan Tang; Ning Fang; Fangjun Wang; Mostafa A. El-Sayed
Most cancer-related deaths come from metastasis. It was recently discovered that nanoparticles could inhibit cancer cell migration. Whereas most researchers focus on single-cell migration, the effect of nanoparticle treatment on collective cell migration has not been explored. Collective migration occurs commonly in many types of cancer metastasis, where a group of cancer cells move together, which requires the contractility of the cytoskeleton filaments and the connection of neighboring cells by the cell junction proteins. Here, we demonstrate that gold nanorods (AuNRs) and the introduction of near-infrared light could inhibit the cancer cell collective migration by altering the actin filaments and cell junctions with significantly triggered phosphorylation changes of essential proteins, using mass spectrometry-based phosphoproteomics. Further observation using super-resolution stochastic optical reconstruction microscopy (STORM) showed the actin cytoskeleton filament bundles were disturbed, which is difficult to differentiate under a normal fluorescence microscope. The decreased expression level of N-cadherin junctions and morphological changes of tight junction protein zonula occludens 2 were also observed. All of these results indicate possible functions of the AuNR treatments in regulating and remodeling the actin filaments and cell junction proteins, which contribute to decreasing cancer cell collective migration.
International Journal of Biotechnology and Bioengineering | 2017
Haithem Farghali; Hala R. Ali; Moustafa R. K. Ali; Ahmed Osman
Raises in the occurrence of antibiotic resistant bacterial infections need novel methods for control. It is currently clear that a nanotechnology-driven method using nanoparticles to target and terminate pathogenic bacteria can be positively applied. Plasmonic photothermal therapy (PPTT) is a hopeful minimally-invasive antibacterial therapy as well as oncological treatment strategy where plasmonic nanoparticles are used to transform near infrared light to localized heat to cause cell death, mainly through apoptosis and/ or necrosis. The objective of this work was to detect the clinical bactericidal activities of gold nanorods (AunRs) using plasmonic photothermal therapy (PPTT) against pathogenic extended spectrum Beta Lactamase (ESβL) Klebsiella pneumoniae as well as apoptotic actions against pyogenic membrane of chronic subcutaneous fistula had no tendency to heal in clinically affected eight years old Griffon female dog. The fistula was infiltrated along its pyogenic wall and intraluminal in multiple spots with AuNR at 7.5 nM concentration and then exposed to an 808 nm diode laser with power of 5.8 W/cm2 and spot size about 5.6 mm2. The PPTT session was repeated every two weeks for four successive sessions. The evaluations of the curative response were done through clinical, bacteriological and histopathoilogical repetitive examinations. Clinically, the purulent discharge decreased in the quantity until it disappeared at the third PPTT session and complete regression of the fistula occurred after the fourth PPTT application. Bacteriologically, Klebsiella pneumoniae isolate showed dramatic reduction in colony forming unit (CFU) count after first session and was completely absent at the fourth PPTT session. Regarding histopathology of the tissue specimens from infected fistula when the case was admitted to the clinic, there was massive liquefied necrotic area infiltrated mainly by neutrophils represented as grade +3 and after first session of PPTT, there was circumscribe necrotic area infiltrated by few numbers of neutrophils and represented as grade +1. After third session of PPTT, complete absence of necrotic tissues was recorded and new fibrous connective tissue formation was observed. Altogether, these outcomes powerfully recommend that AunRs could be a motivating choice to control antibiotic resistant bacterial infections as well as pyogenic conditions which have no tendency to heal 151 Received: April 19, 2017; Accepted: May 19, 2017; Published: July 05, 2017