Moutusi Manna
Tampere University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Moutusi Manna.
Molecular Pharmaceutics | 2016
Tatu Lajunen; Leena Stiina Kontturi; Lauri Viitala; Moutusi Manna; Oana Cramariuc; Tomasz Róg; Alex Bunker; Timo Laaksonen; Tapani Viitala; Lasse Murtomäki; Arto Urtti
Light-triggered drug delivery systems enable site-specific and time-controlled drug release. In previous work, we have achieved this with liposomes containing gold nanoparticles in the aqueous core. Gold nanoparticles absorb near-infrared light and release the energy as heat that increases the permeability of the liposomal bilayer, thus releasing the contents of the liposome. In this work, we replaced the gold nanoparticles with the clinically approved imaging agent indocyanine green (ICG). The ICG liposomes were stable at storage conditions (4-22 °C) and at body temperature, and fast near-infrared (IR) light-triggered drug release was achieved with optimized phospholipid composition and a 1:50 ICG-to-lipid molar ratio. Encapsulated small molecular calcein and FITC-dextran (up to 20 kDa) were completely released from the liposomes after light exposure for 15 s. Location of ICG in the PEG layer of the liposomes was simulated with molecular dynamics. ICG has important benefits as a light-triggering agent in liposomes: fast content release, improved stability, improved possibility of liposomal size control, regulatory approval to use in humans, and the possibility of imaging the in vivo location of the liposomes based on the fluorescence of ICG. Near-infrared light used as a triggering mechanism has good tissue penetration and safety. Thus, ICG liposomes are an attractive option for light-controlled and efficient delivery of small and large drug molecules.
Langmuir | 2011
Moutusi Manna; Chaitali Mukhopadhyay
We have performed molecular dynamics simulations of peptide hormone bradykinin (BK) and its fragment des-Arg9-BK in the presence of an anionic lipid bilayer, with an aim toward delineating the mechanism of action related to their bioactivity. Starting from the initial aqueous environment, both of the peptides are quickly adsorbed and stabilized on the cell surface. Whereas BK exhibits a stronger interaction with the membrane and prefers to stay on the interface, des-Arg9-BK, with the loss of C-terminal Arg, penetrates further. The heterogeneous lipid-water interface induces β-turn-like structure in the otherwise inherently flexible peptides. In the membrane-bound state, we observed C-terminal β-turn formation in BK, whereas for des-Arg9-BK, with the deletion of Arg9, turn formation occurred in the middle of the peptide. The basic Arg residues anchor the peptide to the bilayer by strong electrostatic interactions with charged lipid headgroups. Simulations with different starting orientations of the peptides with respect to the bilayer surface lead to the same observations, namely, the relative positioning of the peptides on the membrane surface, deeper penetration of the des-Arg9-BK, and the formation of turn structures. The lipid headgroups adjacent to the bound peptides become substantially tilted, causing bilayer thinning near the peptide contact region and increase the degree of disorder in nearby lipids. Again, because of hydrogen bonding with the peptide, the neighboring lipids polar heads exhibit considerably reduced flexibility. Corroborating findings from earlier experiments, our results provide important information about how the lipid environment promotes peptide orientation/conformation and how the peptide adapts to the environment.
Biochimica et Biophysica Acta | 2014
Moutusi Manna; Tomasz Róg; Ilpo Vattulainen
Glycolipids are the most complex lipid type in cell membranes, characterized by a great diversity of different structures and functions. The underlying atomistic/molecular interactions and mechanisms associated with these functions are not well understood. Here we discuss how atomistic and molecular simulations can be used to shed light on the role of glycolipids in membrane structure and dynamics, receptor function, and other phenomena related to emergence of diseases such as Parkinsons. The cases we discuss highlight the challenge to understand how glycolipids function in cell membranes, and the significant added value that one would gain by bridging molecular simulations with experiments. This article is part of a Special Issue entitled Tools to study lipid functions.
PLOS ONE | 2014
Maarit Neuvonen; Moutusi Manna; Sini Mokkila; Matti Javanainen; Tomasz Róg; Zheng Liu; Robert Bittman; Ilpo Vattulainen; Elina Ikonen
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.
Free Radical Biology and Medicine | 2015
Waldemar Kulig; Agnieszka Olżyńska; Piotr Jurkiewicz; Anu M. Kantola; Sanna Komulainen; Moutusi Manna; Mohsen Pourmousa; Mario Vazdar; Lukasz Cwiklik; Tomasz Róg; George Khelashvili; Daniel Harries; Martin Hof; Ilpo Vattulainen; Pavel Jungwirth
The behavior of oxysterols in phospholipid membranes and their effects on membrane properties were investigated by means of dynamic light scattering, fluorescence spectroscopy, NMR, and extensive atomistic simulations. Two families of oxysterols were scrutinized-tail-oxidized sterols, which are mostly produced by enzymatic processes, and ring-oxidized sterols, formed mostly via reactions with free radicals. The former family of sterols was found to behave similar to cholesterol in terms of molecular orientation, roughly parallel to the bilayer normal, leading to increasing membrane stiffness and suppression of its membrane permeability. In contrast, ring-oxidized sterols behave quantitatively differently from cholesterol. They acquire tilted orientations and therefore disrupt the bilayer structure with potential implications for signaling and other biochemical processes in the membranes.
eLife | 2016
Moutusi Manna; Miia Niemelä; Joona Tynkkynen; Matti Javanainen; Waldemar Kulig; Daniel J. Müller; Tomasz Róg; Ilpo Vattulainen
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001
Journal of Molecular Modeling | 2014
Waldemar Kulig; Joona Tynkkynen; Matti Javanainen; Moutusi Manna; Tomasz Róg; Ilpo Vattulainen; Pavel Jungwirth
Cholesteryl hemisuccinate is a detergent that is often used to replace cholesterol in crystallization of membrane proteins. Here we employ atomistic molecular dynamics simulations to characterize how well the properties of cholesteryl hemisuccinate actually match those of cholesterol in saturated protein-free lipid membranes. We show that the protonated form of cholesteryl hemisuccinate mimics many of the membrane properties of cholesterol quite well, while the deprotonated form of cholesteryl hemisuccinate is less convincing in this respect. Based on the results, we suggest that cholesteryl hemisuccinate in its protonated form is a quite faithful mimic of cholesterol for membrane protein crystallization, if specific cholesterol-protein interactions (not investigated here) are not playing a crucial role.
Biochimica et Biophysica Acta | 2015
Waldemar Kulig; Piotr Jurkiewicz; Agnieszka Olżyńska; Joona Tynkkynen; Matti Javanainen; Moutusi Manna; Tomasz Róg; Martin Hof; Ilpo Vattulainen; Pavel Jungwirth
Cholesteryl hemisuccinate (CHS) is one of the cholesterol-mimicking detergents not observed in nature. It is, however, widely used in protein crystallography, in biochemical studies of proteins, and in pharmacology. Here, we performed an extensive experimental and theoretical study on the behavior of CHS in lipid membranes rich in unsaturated phospholipids. We found that the deprotonated form of CHS (that is the predominant form under physiological conditions) does not mimic cholesterol very well. The protonated form of CHS does better in this regard, but also its ability to mimic the physical effects of cholesterol on lipid membranes is limited. Overall, although ordering and condensing effects characteristic to cholesterol are present in systems containing any form of CHS, their strength is appreciably weaker compared to cholesterol. Based on the considerable amount of experimental and atomistic simulation data, we conclude that these differences originate from the fact that the ester group of CHS does not anchor it in an optimal position at the water-membrane interface. The implications of these findings for considerations of protein-cholesterol interactions are briefly discussed.
Cellulose | 2015
Adam Orłowski; Tomasz Róg; Sami Paavilainen; Moutusi Manna; Isto Heiskanen; Kaj Backfolk; Jussi Timonen; Ilpo Vattulainen
AbstractTransformation of cellulose into monosaccharides can be achieved in a chemical process performed by a special group of enzymes known as cellulases. We have used atomistic molecular dynamics simulations to study endoglucanase II (Cel5A) that is one of the proteins in this group. Based on the atomistic simulation results, we discuss how the Cel5A enzyme interacts with cellulose fibrils comprised of both crystalline and amorphous regions. We show that the enzyme’s carbohydrate-binding domain prefers to interact with crystalline regions of cellulose, while the catalytic domain has a high affinity to the amorphous regions of fibrils. In particular, through electrostatic interactions the catalytic domain attracts loose glucose chains to its catalytic cleft. The atomistic details of the enzyme–cellulose interaction are presented and the implications for practical applications are briefly discussed.
Biochimica et Biophysica Acta | 2017
Moutusi Manna; Matti Javanainen; Hector Martinez-Seara Monne; Hans-Joachim Gabius; Tomasz Róg; Ilpo Vattulainen
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.