Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mrinal Kumar Sengupta is active.

Publication


Featured researches published by Mrinal Kumar Sengupta.


Talanta | 2002

Arsenic calamity in the Indian subcontinent What lessons have been learned

Dipankar Chakraborti; Mohammad Mahmudur Rahman; Kunal Paul; Uttam Kumar Chowdhury; Mrinal Kumar Sengupta; Dilip Lodh; Chitta Ranjan Chanda; Kshitish Chandra Saha; Subhash Chandra Mukherjee

Groundwater arsenic (As) contamination in West Bengal (WB, India) was first reported in December 1983, when 63 people from three villages of two districts were identified by health officials as suffering from As toxicity. As of October 2001, the authors from the School of Environmental Studies (SOES) have analyzed >105 000 water samples, >25 000 urine/hair/nail/skin-scale samples, screened approximately 86 000 people in WB. The results show that more than 6 million people in 2700 villages from nine affected districts (total population approximately 42 million) of 18 total districts are drinking water containing >/=50 mug l(-1) As and >300 000 people may have visible arsenical skin lesions. The As content of the physiological samples indicates that many more may be sub-clinically affected. Children in As-affected villages may be in special danger. In 1995, we had found three villages in two districts of Bangladesh where groundwater contained >/=50 mug l(-1) As. The present situation is that in 2000 villages in 50 out of total 64 districts of Bangladesh, groundwater contains As above 50 mug l(-1) and more than 25 million people are drinking water above >/=50 mug l(-1) As. After years of research in WB and Bangladesh, additional affected villages are being identified on virtually every new survey. The present research may still reflect only the tip of iceberg in identifying the extent of As contamination. Although the WB As problem became public almost 20 years ago, there are still few concrete plans, much less achievements, to solve the problem. Villagers are probably in worse condition than 20 years ago. Even now, many who are drinking As-contaminated water are not even aware of that fact and its consequences. 20 years ago when the WB government was first informed, it was a casual matter, without the realization of the magnitude this problem was to assume. At least up to 1994, one committee after another was formed but no solution was forthcoming. None of the expert reports has suggested solutions that involve awareness campaigns, education of the villagers and participation of the people. Initially, international aid agencies working in the subcontinent simply did not consider that As could be present in groundwater. Even now, while As in drinking water is being highlighted, there have been almost no studies on how additional As is introduced through the food chain, as large amounts of As are present in the agricultural irrigation water. Past mistakes, notably the ceaseless exploitation of groundwater for irrigation, continue unabated today; at this time, more groundwater is being withdrawn than ever before. No efforts have been made to adopt effective watershed management to harness the extensive surface water and rainwater resources of this region. Proper watershed management and participation by villagers are needed for the proper utilization of water resources and to combat the As calamity. As in groundwater may just be natures initial warning about more dangerous toxins yet to come. What lessons have we really learned?


Molecular Nutrition & Food Research | 2009

Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report.

Dipankar Chakraborti; Bhaskar Das; Mohammad Mahmudur Rahman; Uttam Kumar Chowdhury; Bhajan Kumar Biswas; A. B. Goswami; Bishwajit Nayak; Arup Pal; Mrinal Kumar Sengupta; Sad Ahamed; Amir Hossain; Goutam Basu; Tarit Roychowdhury; Dipankar Das

Since 1988 we have analyzed 140 150 water samples from tube wells in all 19 districts of West Bengal for arsenic; 48.1% had arsenic above 10 microg/L (WHO guideline value), 23.8% above 50 microg/L (Indian Standard) and 3.3% above 300 microg/L (concentration predicting overt arsenical skin lesions). Based on arsenic concentrations we have classified West Bengal into three zones: highly affected (9 districts mainly in eastern side of Bhagirathi River), mildly affected (5 districts in northern part) and unaffected (5 districts in western part). The estimated number of tube wells in 8 of the highly affected districts is 1.3 million, and estimated population drinking arsenic contaminated water above 10 and 50 microg/L were 9.5 and 4.2 million, respectively. In West Bengal alone, 26 million people are potentially at risk from drinking arsenic-contaminated water (above 10 microg/L). Studying information for water from different depths from 107 253 tube wells, we noted that arsenic concentration decreased with increasing depth. Measured arsenic concentration in two tube wells in Kolkata for 325 and 51 days during 2002-2005, showed 15% oscillatory movement without any long-term trend. Regional variability is dependent on sub-surface geology. In the arsenic-affected flood plain of the river Ganga, the crisis is not having too little water to satisfy our needs, it is the crisis of managing the water.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2003

Neuropathy in Arsenic Toxicity from Groundwater Arsenic Contamination in West Bengal, India

Subhash Chandra Mukherjee; Mohammad Mahmudur Rahman; Uttam Kumar Chowdhury; Mrinal Kumar Sengupta; Dilip Lodh; Chitta Ranjan Chanda; Kshitish Chandra Saha; Dipankar Chakraborti

Abstract Large number of people from 9 out of 18 districts of West Bengal, India are endemically exposed to arsenic contaminated groundwater due to drinking of tubewell water containing arsenic level above World Health Organizations maximum permissible limit of 50 µg/L. From our ongoing studies on neurological involvement in patients of arsenicosis from different districts of West Bengal, we report our findings in a total of 451 patients of three districts (Murshidabad, Nadia, and Burdwan), comprising 267 males and 184 females with age ranging from 11 to 79 years. They all had arsenical skin lesions, positive biomarkers and identified source of arsenic contaminated water drinking. Peripheral neuropathy was the predominant neurological complication in these patients affecting 154 (37.3%) of 413 patients of Group 1 and 33 (86.8%) of 38 patients of Group 2. Other possible causes and alternative explanations of neuropathy were excluded. The temporal profile in most of the cases (154 of Group 1) were of chronic affection while the 33 patients of Group 2 developed both neuropathy and dermopathy subacutely. Subacutely affected Group 2 patients had much higher incidence of neuropathy. Paresthesias and pains in the distal parts of extremities were much higher in incidence in Group 2 (73.7% and 23.7% respectively) than in Group 1 (18.4% and 11.1%). Distal limb weakness or atrophy was evident in 7.3% in Group 1 and 10.5% in Group 2. Overall, sensory features were more common than motor features in patients of neuropathy and sensory neuropathy was diagnosed in 30% and 76.3% and sensorimotor in 7.3% and 10.5% respectively in Group 1 and Group 2 subjects. Nerve conduction and electromyographic studies performed in 88 cases revealed dysfunction of sensory nerve in 45% and 27% and of motor nerve in 20% and 16.7% of patients with moderate degree and mild degree of clinical neuropathies respectively. Evoked potential studies performed in 20 patients were largely normal except for two instances each of abnormal visual evoked potential and brainstem auditory evoked potential findings. Prognosis was favorable in mild and early diagnosed cases of neuropathy whereas most of the other more severe and late diagnosed cases showed slow and partial recovery or even deterioration. Outcome in neuropathic patients of arsenicosis and long term toxic neurologic effects yet unexplored and unknown remain as matters of future concern requiring close monitoring.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2003

Arsenic Groundwater Contamination and Sufferings of People in North 24-Parganas, One of the Nine Arsenic Affected Districts of West Bengal, India

Mohammad Mahmudur Rahman; Badal K. Mandal; Tarit Roy Chowdhury; Mrinal Kumar Sengupta; Uttam Kumar Chowdhury; Dilip Lodh; Chitta Ranjan Chanda; G. K. Basu; Subhash Chandra Mukherjee; Kshitish Chandra Saha; Dipankar Chakraborti

Abstract To understand the magnitude of the arsenic calamity in West Bengal, a detailed study spanning 7 years was made in North 24-Parganas, one of the nine arsenic affected districts. Area and population of North 24-Parganas district are 4093.82 sq. km and 7.3 million, respectively. Fourty eight thousand and thirty water samples were analyzed from hand tubewells of North 24-Parganas in use for drinking, cooking and 29.2% of the tubewells were found to have arsenic above 50 µg/L, the maximum permissible limit of World Health Organization (WHO) and 52.8% have arsenic above 10 µg/L, WHO recommended value of arsenic in drinking water. Out of the 22 blocks of North 24-Parganas, in 20 blocks arsenic has been found above the maximum permissible limit and so far in 16 blocks people have been identified as suffering from arsenical skin lesions. From the generated data, it is estimated that about 2.0 million and 1.0 million people are drinking arsenic contaminated water above 10 µg/L and 50 µg/L level, respectively in North 24-Parganas alone. So far, in our preliminary study 33,000 people have been examined at random from arsenic affected villages in North 24-Parganas and 2274 people have been registered with arsenical skin lesions. Extrapolation of the available data indicates about 0.1 million people may be suffering from arsenical skin lesions from North 24-Parganas alone. A sum of 21,000 hair, nail, and urine samples analyses from arsenic affected villages show 56%, 80%, and 87% people have arsenic in biological specimen more than normal/toxic (hair) level, respectively. Thus, many may be subclinically affected. Due to use of arsenic contaminated groundwater for agricultural irrigation, rice and vegetable are getting arsenic contaminated. Hence there is an additional arsenic burden from food chain. People from arsenic affected villages are also suffering from arsenical neuropathy. A followup study indicates that many of the victims suffering from severe arsenical skin lesions for several years are now suffering from cancer or have already died of cancer.


Clinical Toxicology | 2005

Murshidabad—One of the Nine Groundwater Arsenic-Affected Districts of West Bengal, India. Part II: Dermatological, Neurological, and Obstetric Findings

Subhash Chandra Mukherjee; Kshitish Chandra Saha; Shymapada Pati; Rathindra Nath Dutta; Mohammad Mahmudur Rahman; Mrinal Kumar Sengupta; Sad Ahamed; Dilip Lodh; Bhaskar Das; M. Amir Hossain; Bishwajit Nayak; Amitava Mukherjee; Dipankar Chakraborti; Subhir Kumar Dulta; Shyamal Kanti Palit; Imrul Kaies; Ajoy Kishore Barua; Khondaker Abdul Asad

Introduction. To understand the severity of related health effects of chronic arsenic exposure in West Bengal, a detailed 3-year study was carried out in Murshidabad, one of the nine arsenic-affected districts in West Bengal. Methods. We screened 25,274 people from 139 arsenic-affected villages in Murshidabad to identify patients suffering from chronic arsenic toxicity for evidence of multisystemic features and collected biological samples such as head hair, nail, and spot urine from the patients along with the tubewell water they were consuming. Results. Out of 25,274 people screened, 4813 (19%) were registered with arsenical skin lesions. A case series involving arsenical skin lesions resulting in cancer and gangrene were noted during this study. Representative histopathological pictures of skin biopsy of different types of lesions were also presented. Out of 2595 children we examined for arsenical skin lesions, 122 (4%) were registered with arsenical skin lesions, melanosis with or without keratosis. Different clinical and electrophysiological neurological features were noticed among the arsenic-affected villagers. Both the arsenic content in the drinking water and duration of exposure may be responsible in increasing the susceptibility of pregnant women to spontaneous abortions, stillbirths, preterm births, low birth weights, and neonatal deaths. Some additional multisystemic features such as weakness and lethargy, chronic respiratory problems, gastrointestinal symptoms, and anemia were also recorded in the affected population. Discussion. The findings from this survey on different health effects of arsenic exposure were compared to those from previous studies carried out on arsenic-affected populations in India and Bangladesh as well as other affected countries. Conclusion. Multisystemic disorders, including dermal effects, neurological complications, and adverse obstetric outcomes, were observed to be associated with chronic arsenic exposure in the study population in Murshidabad, West Bengal. The magnitude of severity was related to the concentration of arsenic in water as well as duration of the exposure.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2003

Pattern of Excretion of Arsenic Compounds [Arsenite, Arsenate, MMA(V), DMA(V)] in Urine of Children Compared to Adults from an Arsenic Exposed Area in Bangladesh

Uttam Kumar Chowdhury; Mohammad Mahmudur Rahman; Mrinal Kumar Sengupta; Dilip Lodh; Chitta Ranjan Chanda; Shibtosh Roy; Quazi Quamruzzaman; Hiroshi Tokunaga; Masanori Ando; Dipankar Chakraborti

Abstract Urinary arsenic is generally considered as the most reliable indicator of recent exposure to inorganic arsenic and is used as the main bio-marker of exposure. However, due to the different toxicity of arsenic compounds, speciation of arsenic in urine is generally considered to be more convenient for health risk assessment than measuring total arsenic concentration. Additionally, it can give valuable information about the metabolism of arsenic species within the body. In our study, for exposed group—42 urine samples were collected from Datterhat (South) village of Madaripur district, Bangladesh and an average arsenic concentration in their drinking water was 376 µg/L (range 118 to 620 µg/L). For control group, 27 urine samples were collected from a non-affected district, Badhadamil village of Medinipur district, West Bengal, India, where arsenic concentration in their drinking water is below 3 µg/L. The arsenic species in the urine were separated and quantified by using HPLC-ICP-MS. The sum of inorganic arsenic and its metabolites was also determined by FI-HG-AAS. Results indicate that average total urinary arsenic metabolites in childrens urine is higher than adults and total arsenic excretion per kg body weight is also higher for children than adults. For arsenic species between adults and children, it has been observed that inorganic arsenic (In-As) in average is 2.36% and MMA is 6.55% lower for children than adults while DMA is 8.91% (average) higher in children than adults. The efficiency of the methylation process is also assessed by the ratio between urinary concentration of putative product and putative substrate of the arsenic metabolic pathway. Higher values mean higher methylation capacity. Results show the values of the MMA/In-As ratio for adults and children are 0.93 and 0.74 respectively. These results indicate that first reaction of the metabolic pathway is more active in adults than children. But a significant increase in the values of the DMA/MMA ratio in children than adults of exposed group (8.15 vs. 4.11 respectively) indicates 2nd methylation step is more active in children than adults. It has also been shown that the distribution of the values of DMA/MMA ratio to exposed group decrease with increasing age (2nd methylation process). Thus from these results we may infer that children retain less arsenic in their body than adults. This may also explain why children do not show skin lesions compared to adults when both are drinking same contaminated water.


Bulletin of The World Health Organization | 2005

Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India

Mohammad Mahmudur Rahman; Mrinal Kumar Sengupta; Sad Ahamed; Uttam Kumar Chowdhury; Dilip Lodh; Amir Hossain; Bhaskar Das; Niladri Roy; Kshitish Chandra Saha; Shyamal Kanti Palit; Dipankar Chakraborti

An in-depth study was carried out in Rajapur, an arsenic-affected village in West Bengal, India, to determine the degree of groundwater contamination with arsenic and the impact of this contamination on residents. The flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) method was used to measure arsenic concentrations in water and biological samples. Dermatologists recorded the dermatological features of arsenicosis. Out of a total of 336 hand-pumped tube-wells in Rajapur, 91% (307/336) contained arsenic at concentrations > 10 microg/l, and 63% (213/336) contained arsenic at > 50 microg/l. The type of arsenic in groundwater, the variation in concentrations of arsenic as the depth of tube-wells changed, and the iron concentration in the wells were also measured. Altogether 825 of 3500 residents were examined for skin lesions; of these, 149 had lesions caused by exposure to arsenic. Of the 420 biological samples collected and analysed, 92.6% (389) contained arsenic at concentrations that were above normal. Thus many villagers might be subclinically affected. Although five arsenic-filtering devices had been installed in Rajapur, it appears that villagers are still exposed to raised concentrations of arsenic in their drinking-water. Detailed village-level studies of arsenic-affected areas in West Bengal are required in order to understand the magnitude of contamination and its effects on people. Villagers are ill-informed about the dangers of drinking arsenic-contaminated water. The contamination could be brought under control by increasing community awareness of the dangers and implementing proper watershed management techniques that involve local people.


Clinical Toxicology | 2003

Arsenic Toxicity from Homeopathic Treatment

Dipankar Chakraborti; Subhash Chandra Mukherjee; Khitish Chandra Saha; Uttam Kumar Chowdhury; Mohammad Mahmudur Rahman; Mrinal Kumar Sengupta

Abstract Homeopathic medicine is commonly believed to be relatively harmless. However, treatment with improperly used homeopathic preparations may be dangerous. Case Reports. Case 1 presented with melanosis and keratosis following short‐term use of Arsenic Bromide 1‐X followed by long‐term use of other arsenic‐containing homeopathic preparations. Case 2 developed melanotic arsenical skin lesions after taking Arsenicum Sulfuratum Flavum‐1‐X (Arsenic S.F. 1‐X) in an effort to treat his white skin patches. Case 3 consumed Arsenic Bromide 1‐X for 6 days in an effort to treat his diabetes and developed an acute gastrointestinal illness followed by leukopenia, thrombocytopenia, and diffuse dermal melanosis with patchy desquamation. Within ∼2 weeks, he developed a toxic polyneuropathy resulting in quadriparesis. Arsenic concentrations in all three patients were significantly elevated in integument tissue samples. In all three cases, arsenic concentrations in drinking water were normal but arsenic concentrations in samples of the homeopathic medications were elevated. Conclusion. Arsenic used therapeutically in homeopathic medicines can cause clinical toxicity if the medications are improperly used.


Analytical Chemistry | 2009

An automated hydride generation interface to ICPMS for measuring total arsenic in environmental samples.

Mrinal Kumar Sengupta; Purnendu K. Dasgupta

An automated hydride generation (AHG) interface to inductive coupled plasma mass spectroscopy (ICPMS) was developed for measuring arsenic in environmental samples. This technique provides statistically indistinguishable response slopes (within about 3%) for hydride generation-ICPMS (HG-ICPMS) analysis of all major As species, inorganic As(III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), and inorganic As(V); this has not previously been achieved. Previously, sample pretreatment to convert all forms of As into As(V) has been a prerequisite for measuring total arsenic in complex matrices. Under our operating conditions, arsenobetaine (AsB), until now regarded to be inert, also generates a hydride (albeit the response is only approximately 7% of others). The limit of detection (LOD) based on three times the standard deviation of the blank with this technique for AsB, DMA, As(III), MMA, and As(V) is 90, 66, 63, 63, and 63 pg As, respectively. This AHG-ICPMS technique was compared with a flow injection-UV photolysis-HG-ICPMS (FI-UV-ICPMS) and liquid chromatography-UV-HG-ICPMS analysis of arsenic content in National Institute of Standards & Technology (NIST) standard rice flour (standard reference material: SRM 1568a) and rice samples collected from West Bengal, India. Both oxidative acid digestion and methanol:water (1:1) extraction were used. The analytical results for total As in the SRM 1568a digest were 99.2 +/- 0.6 and 100.2 +/- 0.8% of the certified value (290 +/- 3 microg As/kg) by the AHG-ICPMS and the FI-UV-HG-ICPMS techniques, respectively. For rice extracts and the digests, the two techniques provided results that were correlated with linear r2 values of 0.9988 and 0.9987 with intercepts statistically indistinguishable from zero. Chromatographic analysis indicated that As in these rice samples were 75-90% inorganic.


Analytical Chemistry | 2010

Green analyzer for the measurement of total arsenic in drinking water: electrochemical reduction of arsenate to arsine and gas phase chemiluminescence with ozone.

Mrinal Kumar Sengupta; Maather F. Sawalha; Shin Ichi Ohira; Ademola D. Idowu; Purnendu K. Dasgupta

We describe matrix-isolated, reaction chemistry based measurement of arsenic in water down to submicrograms per liter levels in a system that requires only air, water, electricity, and dilute sulfuric acid, the bulk of the latter being recycled. Gas phase chemiluminescence (GPCL) measurement of arsenic is made in an automated batch system with arsenic in situ electroreduced to arsine that is reacted with ozone to emit light. The ozone is generated from oxygen that is simultaneously anodically produced. Of 22 different electrode materials studied, graphite was chosen as the cathode. As(V) is reduced much less efficiently to AsH(3) than As(III). Prereducing all As to As(III) is difficult in the field and tedious. Oxidizing all As to As(V) is simple (e.g., with NaOCl) but greatly reduces subsequent conversion to AsH(3) and hence sensitivity. The rate of the AsH(3)-O(3) GPCL reaction and hence signal intensity increases with [O(3)]. Using oxygen to feed the ozonizer produces higher [O(3)] and substantial signal enhancement. This makes it practical to measure all arsenic as As(V). The system exhibits an LOD (S/N = 3) for total arsenic as As(V) of 0.36 microg/L (5 mL sample). Comparison of total As results in native and spiked water samples with those from inductively coupled plasma mass spectrometry (ICPMS) and other techniques show high correlation (r(2) = 0.9999) and near unity slopes.

Collaboration


Dive into the Mrinal Kumar Sengupta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge