Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mrinmay Pal is active.

Publication


Featured researches published by Mrinmay Pal.


conference on lasers and electro optics | 2010

Picosecond fiber MOPA pumped supercontinuum source with 39 W output power

Kang Kang Chen; Shaif-ul Alam; J.H.V. Price; John R. Hayes; Dejiao Lin; Andrew Malinowski; Christophe A. Codemard; Debashri Ghosh; Mrinmay Pal; Shyamal Kumar Bhadra; David J. Richardson

We report picosecond fiber MOPA pumped supercontinuum source with 39W output, spanning at least 0.4–1.75µm with high and relatively uniform spectral power density of ∼31.7mW/nm corresponding to peak power density of ∼12.5W/nm in 20ps pulse.


Optics Express | 2006

Characterization of porous core layer for controlling rare earth incorporation in optical fiber

Anirban Dhar; Mukul Ch. Paul; Mrinmay Pal; Ashok Kr. Mondal; Suchitra Sen; Himadri Sekhar Maiti; Ranjan Sen

The porous core layer deposited by modified chemical vapour deposition process has been analyzed in terms of thickness, pore size distribution, homogeneity and characteristics of the soot particles to investigate their variation with deposition temperature and input vapour composition. The compositions selected were SiO(2), SiO(2)-GeO(2) and SiO(2)-P(2)O(5). Rare earth ions were incorporated into the deposit by a solution doping technique. The analysis of deposited microstructures was found to provide a quantitative indication about the rare earth incorporation and its variation with respect to process conditions. Thus the characterization provides a method of controlling rare earth doping and ultimate preform/fiber properties.


Journal of Lightwave Technology | 2010

Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber

Mukul Chandra Paul; S. W. Harun; N A D Huri; Azizah Binti Hamzah; Shyamal Das; Mrinmay Pal; Shyamal Kumar Bhadra; H. Ahmad; Seongwoo Yoo; M P Kalita; A.J. Boyland; J.K. Sahu

A wideband erbium-doped fiber amplifier (EDFA) is demonstrated using an Erbium-doped zirconia fiber as the gain medium. With a combination of both Zr and Al, we could achieve a high erbium doping concentration of 4320 ppm in the glass host without any phase separations of rare-earths. The Erbium doped fiber (EDF) is obtained from a fiber preform, which is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber using a MCVD process. Doping of Er2O3 into Zirconia yttria-aluminosilicate based glass is done through solution doping process. The maximum gain of 21.8 dB is obtained at 1560 nm with 2 m long of EDF and co-pumped with 1480 nm laser diode. At high input signal of -4 dBm, a flat-gain at average value of 8.6 dB is obtained with a gain variation of less than 4.4 dB within the wavelength region of 1535-1605 nm and using 3 m of EDF and 100 mW pump power. The corresponding noise figure is maintained below 9.6 dB at this wavelength region.


Optics Express | 2009

Design of all-solid leakage channel fibers with large mode area and low bending loss

Kunimasa Saitoh; Yukihiro Tsuchida; Lorenzo Rosa; Masanori Koshiba; Federica Poli; Annamaria Cucinotta; Stefano Selleri; Mrinmay Pal; Mukul Chandra Paul; Debashri Ghosh; Shyamal Kumar Bhadra

We investigate a novel design for all-solid large mode area (LMA) leakage channel fibers (LCFs) for high-power Yb-doped fiber lasers and amplifiers, based on a single down-doped-silica rod ring surrounding a seven-cell pure-silica core, aiming for effectively single-mode behavior and low bending loss characteristics. Through detailed numerical simulations based on the finite element method (FEM), we find that the proposed all-solid LMA-LCFs, having a seven-cell core and two different sizes of down-doped rods, can achieve sufficient differential mode loss and much lower bending loss, as compared with a previously-reported LCF with a one-cell core and six large down-doped-silica rods.


Optics Letters | 2010

Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers.

Mukul Chandra Paul; S. W. Harun; N A D Huri; Azizah Binti Hamzah; Santanu Das; Mrinmay Pal; Shyamal Kumar Bhadra; H. Ahmad; Seongwoo Yoo; M P Kalita; A.J. Boyland; J.K. Sahu

In this Letter, we present a comprehensive comparison of the performance of a zirconia-based erbium-doped fiber amplifier (Zr-EDFA) and a bismuth-based erbium-doped fiber amplifier (Bi-EDFA). The experimental results reveal that a Zr-EDFA can achieve comparable performance to the conventional Bi-EDFA for C-band and L-band operations. With a combination of both Zr and Al, we could achieve a high erbium-doping concentration of about 2800 ppm (parts per million) in the glass host without any phase separations of rare earths. The Zr-based erbium-doped fiber (Zr-EDF) was fabricated using in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through a solution-doping technique along with modified chemical vapor deposition. At a high input signal of 0 dBm, a flat gain at average value of 13 dB is obtained with a gain variation of less than 2 dB within the wavelength region of 1530-1575 nm and using 2 m of Zr-EDF and 120 mW pump power. The noise figures are less than 9.2 at this wavelength region. It was found that a Zr-EDFA can achieve even better flat-gain value and bandwidth as well as lower noise figure than the conventional Bi-EDFA.


Laser Physics Letters | 2014

High power laser fiber fabricated through vapor phase doping of Ytterbium

Ranjan Sen; Maitreyee Saha; Atasi Pal; Mrinmay Pal; Martin Leich; Jens Kobelke

We present the characteristics of an ytterbium-doped alumino-silicate fiber, fabricated through vapor phase doping of aluminum and ytterbium in the core, along with silica and in conjunction with the modified chemical vapor deposition process. The vapor phase doping of rare-earths provides the opportunity to fabricate large core active fibers with a uniform distribution of dopants. The fibers fabricated exhibited low OH− content, negligible center dip and good optical properties. Lasing performance was tested up to output power of 105 W, with a slope efficiency of 77% with respect to launched pump power. The linear variation of the laser power with a pump shows its potentiality for further power scaling.


Journal of Lightwave Technology | 2011

Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers

Kunimasa Saitoh; Shailendra K. Varshney; Kaori Sasaki; Lorenzo Rosa; Mrinmay Pal; Mukul Chandra Paul; Debashri Ghosh; Shyamal Kumar Bhadra; Masanori Koshiba

We investigate the bending characteristics of leakage channel fibers (LCFs) to achieve large mode area (LMA) and effectively single-mode operation with a practically allowable bending radius for compact Yb-doped fiber applications. Through numerical simulations, carried by the full-vectorial finite-element method, we present the limitations on the effective area of LCFs under bent condition and compare their limits with that of conventional step-index LMA fibers. Due to a better controllability of the low numerical aperture and a large value of the differential bending loss (~20 dB/m) between the fundamental and higher order modes in LCFs, the LMA of ~500 μm2 (core diameter of ~36 μm) at 1064 nm can be achieved when the optimized LCF is bent into a 10 cm bending radius.


Journal of Lightwave Technology | 2011

Blue-Extended Sub-Nanosecond Supercontinuum Generation in Simply Designed Nonlinear Microstructured Optical Fibers

Debashri Ghosh; Samudra Roy; Mrinmay Pal; Philippe Leproux; Pierre Viale; Vincent Tombelaine; Shyamal Kumar Bhadra

We report experimentally observed extreme blue-enhanced supercontinuum (SC) generation down to 372 nm wavelength in simply designed and easily fabricated nonlinear microstructured optical fibers (MOFs). Three different MOFs of various core sizes and dispersion profiles are fabricated in order to optimize the parameters for achieving deeper blue components by group-index matching. The physical mechanism involved in the generation of extreme blue component is explained along with other nonlinear processes participating in the spectral broadening. We also explore the extent of applicability of the group-index matching technique for obtaining blue-enhanced SC and finally optimize the location of the zero dispersion wavelength (ZDW) with respect to the pump wavelength to achieve the maximum blue shift.


Optics Communications | 2009

Design and fabrication of an intrinsically gain flattened Erbium doped fiber amplifier

B. Nagaraju; Mukul Chandra Paul; Mrinmay Pal; Atasi Pal; Ravi K. Varshney; Bishnu P. Pal; Shyamal Kumar Bhadra; G. Monnom; Bernard Dussardier

We report design and subsequent fabrication of an intrinsically gain flattened Erbium doped fiber amplifier (EDFA) based on a highly asymmetrical and concentric dual-core fiber, inner core of which was only partially doped. Phase-resonant optical coupling between the two cores was so tailored through optimization of its refractive index profile parameters that the longer wavelengths within the C-band experience relatively higher amplification compared to the shorter wavelengths thereby reducing the difference in the well-known tilt in the gains between the shorter and longer wavelength regions. The fabricated EDFA exhibited a median gain ≥28 dB (gain excursion below ±2.2 dB within the C-band) when 16 simultaneous standard signal channels were launched by keeping the I/P level for each at ―20 dBm/ channel. Such EDFAs should be attractive for deployment in metro networks, where economics is a premium, because it would cut down the cost on gain flattening filter head.


Chinese Optics Letters | 2013

Self-starting harmonic mode-locked Tm-Bi co-doped germanate fiber laser with carbon nanotube-based saturable absorber

N Saidin; D. I. M. Zen; S S A Damanhuri; S. W. Harun; H. Ahmad; Fauzan Ahmad; Kaharudin Dimyati; Arindam Halder; Mukul Chandra Paul; Mrinmay Pal; Shyamal Kumar Bhadra

We report a ring cavity passively harmonic mode-locked fiber laser using a newly developed thuliumbismuth co-doped fiber (TBF) as a gain medium in conjunction with a carbon nanotube (CNT)-based saturable absorber. The TBF laser generates a third harmonic mode-locked soliton pulse train with a high repetition rate of 50 MHz and a pulse duration of 1.86 ps. The laser operates at 1 901.6 nm with an average power of 6.6 mW, corresponding to a pulse energy of 0.132 nJ, at a 1 552 nm pump power of 723.3 mW.

Collaboration


Dive into the Mrinmay Pal's collaboration.

Top Co-Authors

Avatar

Mukul Chandra Paul

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shyamal Kumar Bhadra

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shyamal Das

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ranjan Sen

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Ahmad

University of Malaya

View shared research outputs
Top Co-Authors

Avatar

Anirban Dhar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Arindam Halder

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Atasi Pal

Central Glass and Ceramic Research Institute

View shared research outputs
Top Co-Authors

Avatar

Debashri Ghosh

Central Glass and Ceramic Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge