Mucip Genisel
Ağrı İbrahim Çeçen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mucip Genisel.
Journal of Plant Physiology | 2015
Serkan Erdal; Mucip Genisel; Hulya Turk; Rahmi Dumlupinar; Yavuz Demir
The alternative oxidase (AOX) is the enzyme responsible for the alternative respiratory pathway. This experiment was conducted to examine the influence on cold tolerance ability of chickpea (Cicer aurentium cv. Müfitbey) seedlings of AOX activator (pyruvate), AOX inhibitor (salicylhydroxamic acid (SHAM)) and an inhibitor of the cytochrome pathway of respiration (antimycin A) treatments. 5mM pyruvate, 2μM antimycin A and 4mM SHAM solutions were exogenously applied to thirteen-day-old chickpea leaves and then the seedlings were transferred to a different plant growth chamber arranged to 10/5°C (day/night) for 48h. Cold stress markedly increased the activities of antioxidant enzymes compared to controls. Pyruvate and antimycin A significantly increased the cold-induced increase in antioxidant activity but SHAM decreased it. Cold-induced increases in superoxide anion, hydrogen peroxide, and lipid peroxidation levels were significantly reduced by pyruvate and antimycin A, but increased by SHAM treatment. Pyruvate and antimycin A application increased both the activity and protein expression of AOX in comparison to cold stress alone. However, SHAM significantly decreased activity of AOX but did not affect its expression. Total cellular respiration values (TCRV) supported the changes in activity and expression of AOX. While TCRV were increased by cold and pyruvate, they were significantly reduced by SHAM and especially antimycin A. These results indicate that pyruvate and antimycin A applications were effective in reducing oxidative stress by activating the alternative respiratory pathway as well as antioxidant activity. Furthermore, direct activation of AOX, rather than inhibition of the cytochrome pathway, was the most effective way to mitigate cold stress.
Preparative Biochemistry & Biotechnology | 2013
Mesut Taskin; Nevzat Esim; Mucip Genisel; Serkan Ortucu; Ismet Hasenekoglu; Ozden Canli; Serkan Erdal
The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated. Supplemental materials are available for this article. Go to the publishers online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.
Toxicology and Industrial Health | 2012
Mucip Genisel; Serkan Erdal; Hulya Turk; Rahmi Dumlupinar
Bone powder (BP), a by-product of cattle slaughtering plants, consists of fat, protein, amino acids, inorganic elements and vitamins. It is used as bone meal in biomedical and feed industry because of its rich content. In addition, bone contains a large amount of inorganic elements especially calcium (Ca) and phosphorus (P), which the plants need to maintain their physiological and biochemical processes. BP has been used as Ca and P source in agriculture for many years; however, its effects on plant growth and development have not yet been studied in detail. The present study aimed to determine the effects of BP on dry weight and contents of total chlorophyll, soluble protein and sugar as indicators of physiological response in the leaves. For this purpose, bone powder solutions (BPS) were prepared at different concentrations (0.5%, 1%, 1.5% and 2%) and applied to growing media of the 10-day wheat seedlings. Afterward, the 14-day seedlings were harvested, and the effects of BPS on plant response were determined. The results showed that BPS treatments significantly stimulated dry weight and contents of total chlorophyll, protein and sugar compared to control seedlings. The best stimulatory effect of BPS was determined at 1% concentration. According to these results, it is possible to say that BP may be used to meet the inorganic element requirements of plants in poor soils and hydroponic systems.
INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016 | 2016
Mucip Genisel; Serkan Erdal
The aim of this study was to elucidate how 5-aminolevulinic acid (ALA), the precursor of chlorophyll compounds, affects the defence mechanisms of wheat seedlings induced by salt stress. To determine the possible stimulative effects of ALA against salinity, 11-day old wheat seedlings were sprayed with ALA at two different concentrations (10 and 20 mg·l−1) and then stressed by exposure to salt (150 mM NaCl). The salt stress led to significant changes in the antioxidant activity. While guaiacol peroxidase activity decreased, the activities of superoxide dismutase, catalase, and ascorbate peroxidase markedly increased under salt stress. Compared to the salt stress alone, the application of ALA beforehand further increased the activity of these enzymes. This study is the first time the effects of ALA have been monitored with regard to protein content and the isoenzyme profiles of the antioxidant enzymes. Although the salt stress reduced both the soluble protein content and protein band intensities, pre-treatin...
INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016 | 2016
Hulya Turk; Mucip Genisel; Serkan Erdal
Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K+/Na+ ratio was reduced by salt stress, ALA application changed this ratio in favor of K+. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phospho...
#N#Third International Conference on Advances in Bio-Informatics and Environmental Engineering - ICABEE 2015#N# | 2015
Hulya Turk; Mucip Genisel; Serkan Erdal
To determine the effects of estrone on the ability of plants to tolerate boron toxicity, estrone (0.01 μM) and boron (5 mM H3BO3), singly or in combination, were exogenously applied to 11-d-wheat seedlings and 3 days later from treatments, they were harvested to determine many parameters. Boron toxicity caused to remarkable reductions on the root and shoot lengths. Besides, it led to a marked decrease in the activities of antioxidant enzymes, including superoxide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as an decrease in the level of soluble protein and photosynthetic pigments including chlorophyll and carotene. Thus, boron toxicity bring about a significant oxidative injury by increasing levels of the superoxide anion (O2 -.), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Whereas estrone was able to reduce the boron-induced oxidative damage and improved the antioxidant system. Moreover, the effects of boron toxicity on genetic material were also determined using the RAPD (randomly amplified polymorphic DNA) technique. While boron led to DNA damage in wheat seedlings, estrone significantly mitigated this damage. Element analysis demonstrated that estrone did not prevent boron uptake by roots, whereas it did stimulate the transportation of lead from roots to leaves. Taken together, our data demonstrate a versatile manner for the first time that estrone-induced boron tolerance is associated with many biochemical and molecular mechanisms, including the antioxidant system, ROS detoxification, modulation of uptake and transportation of boron and protection of genetic material.
Plant Growth Regulation | 2014
Hulya Turk; Serkan Erdal; Mucip Genisel; Ökkeş Atici; Yavuz Demir; Derya Yanmis
Biological Trace Element Research | 2011
Rahmi Dumlupinar; Mucip Genisel; Serkan Erdal; Turgay Korkut; M. Sinan Taspinar; Mesut Taskin
Journal of Food Processing and Preservation | 2011
Mesut Taskin; Serkan Erdal; Mucip Genisel
Plant Growth Regulation | 2015
Mucip Genisel; Serkan Erdal; Murat Kizilkaya