Mudassir Rashid
Illinois Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mudassir Rashid.
Journal of diabetes science and technology | 2018
Iman Hajizadeh; Mudassir Rashid; Sediqeh Samadi; Jianyuan Feng; Mert Sevil; Nicole Hobbs; Caterina Lazaro; Zacharie Maloney; Rachel Brandt; Xia Yu; Elizabeth Littlejohn; Eda Cengiz; Ali Cinar
Background: The artificial pancreas (AP) system, a technology that automatically administers exogenous insulin in people with type 1 diabetes mellitus (T1DM) to regulate their blood glucose concentrations, necessitates the estimation of the amount of active insulin already present in the body to avoid overdosing. Method: An adaptive and personalized plasma insulin concentration (PIC) estimator is designed in this work to accurately quantify the insulin present in the bloodstream. The proposed PIC estimation approach incorporates Hovorka’s glucose-insulin model with the unscented Kalman filtering algorithm. Methods for the personalized initialization of the time-varying model parameters to individual patients for improved estimator convergence are developed. Data from 20 three-days-long closed-loop clinical experiments conducted involving subjects with T1DM are used to evaluate the proposed PIC estimation approach. Results: The proposed methods are applied to the clinical data containing significant disturbances, such as unannounced meals and exercise, and the results demonstrate the accurate real-time estimation of the PIC with the root mean square error of 7.15 and 9.25 mU/L for the optimization-based fitted parameters and partial least squares regression-based testing parameters, respectively. Conclusions: The accurate real-time estimation of PIC will benefit the AP systems by preventing overdelivery of insulin when significant insulin is present in the bloodstream.
Control Engineering Practice | 2018
Xia Yu; Mudassir Rashid; Jianyuan Feng; Nicole Hobbs; Iman Hajizadeh; Sediqeh Samadi; Mert Sevil; Caterina Lazaro; Zacharie Maloney; Elizabeth Littlejohn; Laurie Quinn; Ali Cinar
Accurate predictions of glucose concentrations are necessary to develop an artificial pancreas (AP) system for people with type 1 diabetes (T1D). In this work, a novel glucose forecasting paradigm based on a model fusion strategy is developed to accurately characterize the variability and transient dynamics of glycemic measurements. To this end, four different adaptive filters and a fusion mechanism are proposed for use in the online prediction of future glucose trajectories. The filter fusion mechanism is developed based on various prediction performance indexes to guide the overall output of the forecasting paradigm. The efficiency of the proposed model fusion based forecasting method is evaluated using simulated and clinical datasets, and the results demonstrate the capability and prediction accuracy of the data-based fusion filters, especially in the case of limited data availability. The model fusion framework may be used in the development of an AP system for glucose regulation in patients with T1D.
Computers & Chemical Engineering | 2018
Jianyuan Feng; Iman Hajizadeh; Xia Yu; Mudassir Rashid; Sediqeh Samadi; Mert Sevil; Nicole Hobbs; Rachel Brandt; Caterina Lazaro; Zacharie Maloney; Elizabeth Littlejohn; Louis H. Philipson; Ali Cinar
Artificial pancreas (AP) systems provide automated regulation of blood glucose concentration (BGC) for people with type 1 diabetes (T1D). An AP includes three components: a continuous glucose monitoring (CGM) sensor, a controller calculating insulin infusion rate based on the CGM signal, and a pump delivering the insulin amount calculated by the controller to the patient. The performance of the AP system depends on successful operation of these three components. Many APs use model predictive controllers that rely on models to predict BGC and to calculate the optimal insulin infusion rate. The performance of model-based controllers depends on the accuracy of the models that is affected by large dynamic changes in glucose-insulin metabolism or equipment performance that may move the operating conditions away from those used in developing the models and designing the control system. Sensor errors and missing signals will cause calculation of erroneous insulin infusion rates. And the performance of the controller may vary at each sampling step and each period (meal, exercise, and sleep), and from day to day. Here we describe a multi-level supervision and controller modification (ML-SCM) module is developed to supervise the performance of the AP system and retune the controller. It supervises AP performance in 3 time windows: sample level, period level, and day level. At sample level, an online controller performance assessment sub-module will generate controller performance indexes to evaluate various components of the AP system and conservatively modify the controller. A sensor error detection and signal reconciliation module will detect sensor error and reconcile the CGM sensor signal at each sample. At period level, the controller performance is evaluated with information collected during a certain time period and the controller is tuned more aggressively. At the day level, the daily CGM ranges are further analyzed to determine the adjustable range of controller parameters used for sample level and period level. Thirty subjects in the UVa/Padova metabolic simulator were used to evaluate the performance of the ML-SCM module and one clinical experiment is used to illustrate its performance in a clinical environment. The results indicate that the AP system with an ML-SCM module has a safer range of glucose concentration distribution and more appropriate insulin infusion rate suggestions than an AP system without the ML-SCM module.
Journal of diabetes science and technology | 2018
Iman Hajizadeh; Mudassir Rashid; Sediqeh Samadi; Jianyuan Feng; Mert Sevil; Nicole Hobbs; Caterina Lazaro; Zacharie Maloney; Elizabeth Littlejohn; Ali Cinar
Background: Despite the recent advancements in the modeling of glycemic dynamics for type 1 diabetes mellitus, automatically considering unannounced meals and exercise without manual user inputs remains challenging. Method: An adaptive model identification technique that incorporates exercise information and estimates of the effects of unannounced meals obtained automatically without user input is proposed in this work. The effects of the unknown consumed carbohydrates are estimated using an individualized unscented Kalman filtering algorithm employing an augmented glucose-insulin dynamic model, and exercise information is acquired from noninvasive physiological measurements. The additional information on meals and exercise is incorporated with personalized estimates of plasma insulin concentration and glucose measurement data in an adaptive model identification algorithm. Results: The efficacy of the proposed personalized and adaptive modeling algorithm is demonstrated using clinical data involving closed-loop experiments of the artificial pancreas system, and the results demonstrate accurate glycemic modeling with the average root-mean-square error (mean absolute error) of 25.50 mg/dL (18.18 mg/dL) for six-step (30 minutes ahead) predictions. Conclusions: The approach presented is able to identify reliable time-varying individualized glucose-insulin models.
Industrial & Engineering Chemistry Research | 2017
Iman Hajizadeh; Mudassir Rashid; Sediqeh Samadi; Jianyuan Feng; Nicole Frantz; Mert Sevil; Eda Cengiz; Ali Cinar
IFAC-PapersOnLine | 2017
Iman Hajizadeh; Mudassir Rashid; Sediqeh Samadi; Jianyuan Feng; Mert Sevil; Nicole Frantz; Caterina Lazaro; Zacharie Maloney; Elizabeth Littlejohn; Ali Cinar
advances in computing and communications | 2018
Mudassir Rashid; Iman Hajizadeh; Ali Cinar
advances in computing and communications | 2018
Iman Hajizadeh; Mudassir Rashid; Ali Cinar
IFAC-PapersOnLine | 2018
Iman Hajizadeh; Mudassir Rashid; Ali Cinar
IFAC-PapersOnLine | 2018
Xia Yu; Mudassir Rashid; Jianyuan Feng; Nicole Hobbs; Iman Hajizadeh; Sediqeh Samadi; Mert Sevil; Caterina Lazaro; Zacharie Maloney; Ali Cinar