Mudita Singhal
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mudita Singhal.
PLOS ONE | 2009
Amir H. Qureshi; Vineet Chaoji; Dony Maiguel; Mohd Hafeez Faridi; Constantinos J. Barth; Saeed Salem; Mudita Singhal; Darren Stoub; Bryan Krastins; Mitsunori Ogihara; Mohammed Javeed Zaki; Vineet Gupta
During atherogenesis and vascular inflammation quiescent platelets are activated to increase the surface expression and ligand affinity of the integrin αIIbβ3 via inside-out signaling. Diverse signals such as thrombin, ADP and epinephrine transduce signals through their respective GPCRs to activate protein kinases that ultimately lead to the phosphorylation of the cytoplasmic tail of the integrin αIIbβ3 and augment its function. The signaling pathways that transmit signals from the GPCR to the cytosolic domain of the integrin are not well defined. In an effort to better understand these pathways, we employed a combination of proteomic profiling and computational analyses of isolated human platelets. We analyzed ten independent human samples and identified a total of 1507 unique proteins in platelets. This is the most comprehensive platelet proteome assembled to date and includes 190 membrane-associated and 262 phosphorylated proteins, which were identified via independent proteomic and phospho-proteomic profiling. We used this proteomic dataset to create a platelet protein-protein interaction (PPI) network and applied novel contextual information about the phosphorylation step to introduce limited directionality in the PPI graph. This newly developed contextual PPI network computationally recapitulated an integrin signaling pathway. Most importantly, our approach not only provided insights into the mechanism of integrin αIIbβ3 activation in resting platelets but also provides an improved model for analysis and discovery of PPI dynamics and signaling pathways in the future.
BMC Bioinformatics | 2007
Mudita Singhal; Haluk Resat
BackgroundKnowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI) networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins.ResultsDomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms.ConclusionWe envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed using the DomainGA scores are reasonably low, and the erroneous predictions can be filtered further using supplementary approaches such as those based on literature search or other prediction methods.
Journal of Proteome Research | 2008
Vladislav A. Petyuk; Wei Jun Qian; Charlotte Hinault; Marina A. Gritsenko; Mudita Singhal; Matthew E. Monroe; David G. Camp; Rohit N. Kulkarni; Richard D. Smith
The pancreatic islets of Langerhans, and especially the insulin-producing beta cells, play a central role in the maintenance of glucose homeostasis. Alterations in the expression of multiple proteins in the islets that contribute to the maintenance of islet function are likely to underlie the pathogenesis of types 1 and 2 diabetes. To identify proteins that constitute the islet proteome, we provide the first comprehensive proteomic characterization of pancreatic islets for mouse, the most commonly used animal model in diabetes research. Using strong cation exchange fractionation coupled with reversed phase LC-MS/MS we report the confident identification of 17,350 different tryptic peptides covering 2612 proteins having at least two unique peptides per protein. The data set also identified approximately 60 post-translationally modified peptides including oxidative modifications and phosphorylation. While many of the identified phosphorylation sites corroborate those previously known, the oxidative modifications observed on cysteinyl residues reveal potentially novel information suggesting a role for oxidative stress in islet function. Comparative analysis with 15 available proteomic data sets from other mouse tissues and cells revealed a set of 133 proteins predominantly expressed in pancreatic islets. This unique set of proteins, in addition to those with known functions such as peptide hormones secreted from the islets, contains several proteins with as yet unknown functions. The mouse islet protein and peptide database accessible at (http://ncrr.pnl.gov), provides an important reference resource for the research community to facilitate research in the diabetes and metabolism fields.
ieee symposium on information visualization | 2004
Pak Chung Wong; Christian Posse; Mark A. Whiting; Susan L. Havre; Nick Cramer; Anuj R. Shah; Mudita Singhal; Alan E. Turner; James J. Thomas
This is the first part (summary) of a three-part contest entry submitted to IEEE InfoVis 2004. The contest topic is visualizing InfoVis symposium papers from 1995 to 2002 and their references. The paper introduces the visualization tool IN-SPIRE, the visualization process and results, and presents lessons learned.
Bioinformatics | 2010
Anuj R. Shah; Khushbu Agarwal; Erin S. Baker; Mudita Singhal; Anoop Mayampurath; Yehia M. Ibrahim; Lars J. Kangas; Matthew E. Monroe; Rui Zhao; Mikhail E. Belov; Gordon A. Anderson; Richard D. Smith
MOTIVATION Ion mobility spectrometry (IMS) has gained significant traction over the past few years for rapid, high-resolution separations of analytes based upon gas-phase ion structure, with significant potential impacts in the field of proteomic analysis. IMS coupled with mass spectrometry (MS) affords multiple improvements over traditional proteomics techniques, such as in the elucidation of secondary structure information, identification of post-translational modifications, as well as higher identification rates with reduced experiment times. The high throughput nature of this technique benefits from accurate calculation of cross sections, mobilities and associated drift times of peptides, thereby enhancing downstream data analysis. Here, we present a model that uses physicochemical properties of peptides to accurately predict a peptides drift time directly from its amino acid sequence. This model is used in conjunction with two mathematical techniques, a partial least squares regression and a support vector regression setting. RESULTS When tested on an experimentally created high confidence database of 8675 peptide sequences with measured drift times, both techniques statistically significantly outperform the intrinsic size parameters-based calculations, the currently held practice in the field, on all charge states (+2, +3 and +4). AVAILABILITY The software executable, imPredict, is available for download from http:/omics.pnl.gov/software/imPredict.php CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Computational Biology and Chemistry | 2007
Mudita Singhal; Kelly O. Domico
The importance of understanding biological interaction networks has fueled the development of numerous interaction data generation techniques, databases and prediction tools. However, not all prediction tools and databases predict interactions with one hundred percent accuracy. Generation of high-confidence interaction networks formulates the first step towards deciphering unknown protein functions, determining protein complexes and inventing drugs. The CABIN: Collective Analysis of Biological Interaction Networks software is an exploratory data analysis tool that enables analysis and integration of interactions evidence obtained from multiple sources, thereby increasing the confidence of computational predictions as well as validating experimental observations. CABIN has been written in Java and is available as a plugin for Cytoscape--an open source network visualization tool.
Information Visualization | 2009
George Chin; Mudita Singhal; Grant C. Nakamura; Vidhya Gurumoorthi; Natalie A. Freeman-Cadoret
For scientific data visualizations, real-time data streams present many interesting challenges when compared to static data. Real-time data are dynamic, transient, high-volume and temporal. Effective visualizations need to be able to accommodate dynamic data behavior as well as Abstract and present the data in ways that make sense to and are usable by humans. The Visual Content Analysis of Real-Time Data Streams project at the Pacific Northwest National Laboratory is researching and prototyping dynamic visualization techniques and tools to help facilitate human understanding and comprehension of high-volume, real-time data. The general strategy of the project is to develop and evolve visual contexts that will organize and orient high-volume dynamic data in conceptual and perceptive views. The goal is to allow users to quickly grasp dynamic data in forms that are intuitive and natural without requiring intensive training in the use of specific visualization or analysis tools and methods. Thus far, the project has prototyped five different visualization prototypes that represent and convey dynamic data through human-recognizable contexts and paradigms such as hierarchies, relationships, time and geography. We describe the design considerations and unique features of these dynamic visualization prototypes as well as our findings in the exploration and evaluation of their use.
Disease Markers | 2010
Jason E. McDermott; Michelle N. Costa; Derek B. Janszen; Mudita Singhal; Susan C. Tilton
The recent advances in high-throughput data acquisition have driven a revolution in the study of human disease and determination of molecular biomarkers of disease states. It has become increasingly clear that many of the most important human diseases arise as the result of a complex interplay between several factors including environmental factors, such as exposure to toxins or pathogens, diet, lifestyle, and the genetics of the individual patient. Recent research has begun to describe these factors in the context of networks which describe relationships between biological components, such as genes, proteins and metabolites, and have made progress towards the understanding of disease as a dysfunction of the entire system, rather than, for example, mutations in single genes. We provide a summary of some of the recent work in this area, focusing on how the integration of different kinds of complementary data, and analysis of biological networks and pathways can lead to discovery of robust, specific and useful biomarkers of disease and how these methods can help shed light on the mechanisms and etiology of the diseases being studied.
ieee international conference on escience | 2008
Anuj R. Shah; Mudita Singhal; Tara D. Gibson; Chandrika Sivaramakrishnan; Katrina M. Waters; Ian Gorton
Systems biology research demands the availability of tools and technologies that span a comprehensive range of computational capabilities, including data management, transfer, processing, integration, and interpretation. To address these needs, we have created the bioinformatics resource manager (BRM), a scalable, flexible, and easy to use tool for biologists to undertake complex analyses. This paper describes the underlying software architecture of the BRM that integrates multiple commodity platforms to provide a highly extensible and scalable software infrastructure for bioinformatics. The architecture integrates a J2EE 3-tier application with an archival experimental data management system, the GAGGLE framework for desktop tool integration, and the MeDICi integration framework for high-throughput data analysis workflows. This architecture facilitates a systems biology software solution that enables the entire spectrum of scientific activities, from experimental data access to high throughput processing and analysis of data for biologists and experimental scientists.
data mining in bioinformatics | 2009
Ronald C. Taylor; Mudita Singhal; Don S. Daly; Jason M. Gilmore; William R. Cannon; Kelly O. Domico; Amanda M. White; Deanna L. Auberry; Kenneth J. Auberry; Brian S. Hooker; Gregory B. Hurst; Jason E. McDermott; W. Hayes McDonald; Dale A. Pelletier; Denise Schmoyer; H. Steven Wiley
We present a platform for the reconstruction of protein-protein interaction networks inferred from Mass Spectrometry (MS) bait-prey data. The Software Environment for Biological Network Inference (SEBINI), an environment for the deployment of network inference algorithms that use high-throughput data, forms the platform core. Among the many algorithms available in SEBINI is the Bayesian Estimator of Probabilities of Protein-Protein Associations (BEPro3) algorithm, which is used to infer interaction networks from such MS affinity isolation data. Also, the pipeline incorporates the Collective Analysis of Biological Interaction Networks (CABIN) software. We have thus created a structured workflow for protein-protein network inference and supplemental analysis.