Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mufeed Mahd is active.

Publication


Featured researches published by Mufeed Mahd.


Medical Physics | 2013

Generation of voxelized breast phantoms from surgical mastectomy specimens

J. Michael O'Connor; Mini Das; Clay S. Dider; Mufeed Mahd; Stephen J. Glick

PURPOSE In the research and development of dedicated tomographic breast imaging systems, digital breast object models, also known as digital phantoms, are useful tools. While various digital breast phantoms do exist, the purpose of this study was to develop a realistic high-resolution model suitable for simulating three-dimensional (3D) breast imaging modalities. The primary goal was to design a model capable of producing simulations with realistic breast tissue structure. METHODS The methodology for generating an ensemble of digital breast phantoms was based on imaging surgical mastectomy specimens using a benchtop, cone-beam computed tomography system. This approach allowed low-noise, high-resolution projection views of the mastectomy specimens at each angular position. Reconstructions of these projection sets were processed using correction techniques and diffusion filtering prior to segmentation into breast tissue types in order to generate phantoms. RESULTS Eight compressed digital phantoms and 20 uncompressed phantoms from which an additional 96 pseudocompressed digital phantoms with voxel dimensions of 0.2 mm(3) were generated. Two distinct tissue classification models were used in forming breast phantoms. The binary model classified each tissue voxel as either adipose or fibroglandular. A multivalue scaled model classified each tissue voxel as percentage of adipose tissue (range 1%-99%). Power spectral analysis was performed to compare simulated reconstructions using the breast phantoms to the original breast specimen reconstruction, and fits were observed to be similar. CONCLUSIONS The digital breast phantoms developed herein provide a high-resolution anthropomorphic model of the 3D uncompressed and compressed breast that are suitable for use in evaluating and optimizing tomographic breast imaging modalities. The authors believe that other research groups might find the phantoms useful, and therefore they offer to make them available for wider use.


Medical Imaging 2008: Physics of Medical Imaging | 2008

Using Mastectomy Specimens to Develop Breast Models for Breast Tomosynthesis and CT Breast Imaging

J. Michael O'Connor; Mini Das; Clay Didier; Mufeed Mahd; Stephen J. Glick

Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. As previously reported, we have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system and developed computer simulation software to model such a system. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens for generating an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. These breast models can be used to simulate realistic projection data for both breast tomosynthesis (BT) and CT systems thereby providing a powerful evaluation and optimization mechanism.


Medical Physics | 2013

Investigation of energy weighting using an energy discriminating photon counting detector for breast CT.

Kesava Kalluri; Mufeed Mahd; Stephen J. Glick

PURPOSE Breast CT is an emerging imaging technique that can portray the breast in 3D and improve visualization of important diagnostic features. Early clinical studies have suggested that breast CT has sufficient spatial and contrast resolution for accurate detection of masses and microcalcifications in the breast, reducing structural overlap that is often a limiting factor in reading mammographic images. For a number of reasons, image quality in breast CT may be improved by use of an energy resolving photon counting detector. In this study, the authors investigate the improvements in image quality obtained when using energy weighting with an energy resolving photon counting detector as compared to that with a conventional energy integrating detector. METHODS Using computer simulation, realistic CT images of multiple breast phantoms were generated. The simulation modeled a prototype breast CT system using an amorphous silicon (a-Si), CsI based energy integrating detector with different x-ray spectra, and a hypothetical, ideal CZT based photon counting detector with capability of energy discrimination. Three biological signals of interest were modeled as spherical lesions and inserted into breast phantoms; hydroxyapatite (HA) to represent microcalcification, infiltrating ductal carcinoma (IDC), and iodine enhanced infiltrating ductal carcinoma (IIDC). Signal-to-noise ratio (SNR) of these three lesions was measured from the CT reconstructions. In addition, a psychophysical study was conducted to evaluate observer performance in detecting microcalcifications embedded into a realistic anthropomorphic breast phantom. RESULTS In the energy range tested, improvements in SNR with a photon counting detector using energy weighting was higher (than the energy integrating detector method) by 30%-63% and 4%-34%, for HA and IDC lesions and 12%-30% (with Al filtration) and 32%-38% (with Ce filtration) for the IIDC lesion, respectively. The average area under the receiver operating characteristic curve (AUC) for detection of microcalcifications was higher by greater than 19% (for the different energy weighting methods tested) as compared to the AUC obtained with an energy integrating detector. CONCLUSIONS This study showed that breast CT with a CZT photon counting detector using energy weighting can provide improvements in pixel SNR, and detectability of microcalcifications as compared to that with a conventional energy integrating detector. Since a number of degrading physical factors were not modeled into the photon counting detector, this improvement should be considered as an upper bound on achievable performance.


IWDM '08 Proceedings of the 9th international workshop on Digital Mammography | 2008

Comparison of Two Methods to Develop Breast Models for Simulation of Breast Tomosynthesis and CT

J. Michael O'Connor; Mini Das; Clay Didier; Mufeed Mahd; Stephen J. Glick

Dedicated x-ray computed tomography (CT) of the breast using a cone-beam flat-panel detector system is a modality under investigation by a number of research teams. Several teams, including ours, have fabricated prototype, bench-top flat-panel CT breast imaging (CTBI) systems. We also use computer simulation software to optimize system parameters. We are developing a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens in order to generate an ensemble of 3D digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. The resulting breast models can then be used to simulate realistic projection data for both Breast Tomosynthesis (BT) and Breast CT (BCT) systems thereby providing a powerful evaluation and optimization mechanism for research and development of novel breast imaging systems as well as the optimization of imaging techniques for such systems. Having the capability of using breast object models and simulation software is clinically significant because prior to a clinical trial of any prototype breast imaging system many parameter tradeoffs can be investigated in a simulation environment. This capability is worthwhile not only for the obvious benefit of improving patient safety during initial clinical trials but also because simulation prior to prototype implementation should result in reduced cost and increased speed of development. The main goal of this study is to compare results obtained using two different methods to develop breast object models in order to select the better technique for developing the entire ensemble.


international conference on digital mammography | 2010

Development of an ensemble of digital breast object models

J. Michael O'Connor; Mini Das; Clay Didier; Mufeed Mahd; Stephen J. Glick

In the investigation of emerging tomographic breast imaging methods using flat-panel detectors (FPDs), digital breast object models are useful tools These models are also commonly referred to as digital phantoms We have created an ensemble of digital breast object phantoms based on CT scans of surgical mastectomy specimens Early versions of the phantoms have been used in our published research Recently we have improved some of our processing tools such as the use of 3-D anisotropic diffusion filtering (ADF) prior to segmentation, and we have evaluated breast object models generated with different methods including power spectral analysis, ROI statistics and an observation study.


Medical Imaging 2007: Physics of Medical Imaging | 2007

Characterization of a prototype tabletop x-ray CT breast imaging system

J. Michael O'Connor; Stephen J. Glick; Xing Gong; Clay Didier; Mufeed Mahd

Planar X-ray mammography is the standard medical imaging modality for the early detection of breast cancer. Based on advancements in digital flat-panel detector technology, dedicated x-ray computed tomography (CT) mammography is a modality under investigation that offers the potential for improved breast tumor imaging. We have implemented a prototype half cone-beam CT breast imaging system that utilizes an indirect flat-panel detector. This prototype can be used to explore and evaluate the effect of varying acquisition and reconstruction parameters on image quality. This report describes our system and characterizes the performance of the system through the analysis of Modulation Transfer Function (MTF) and Noise Power Spectrum (NPS). All CT reconstructions were made using Feldkamps filtered backprojection algorithm. The 3D MTF was determined by the analysis of the plane spread function (PlSF) derived from the surface spread function (SSF) of reconstructed 6.3mm spheres. 3D NPS characterization was performed through the analysis of a 3D volume extracted from zero-mean CT noise of air reconstructions. The effect of varying locations on MTF and the effect of different Butterworth filter cutoff frequencies on NPS are reported. Finally, we present CT images of mastectomy excised breast tissue. Breast specimen images were acquired on our CTMS using an x-ray technique similar to the one used during performance characterization. Specimen images demonstrate the inherent CT capability to reduce the masking effect of anatomical noise. Both the quantitative system characterization and the breast specimen images continue to reinforce the hope that dedicated flat-panel detector, x-ray cone-beam CT will eventually provide enhanced breast cancer detection capability.


Translational Vision Science & Technology | 2017

Associations between Optic Nerve Head–Related Anatomical Parameters and Refractive Error over the Full Range of Glaucoma Severity

Neda Baniasadi; Mengyu Wang; Hui Wang; Mufeed Mahd; Tobias Elze

Purpose To evaluate the associations between optic disc (OD)-related anatomical parameters (interartery angle [IAA] between superior and inferior temporal retinal arteries, OD tilt [TL], rotation [ROT], and torsion [TO], OD surface curvature [CUR], and central retinal vessel trunk entry point location [CRVTL] on OD) and the spherical equivalent of refractive error (SE), and to assess the impact of glaucoma severity on these relationships. Methods Cirrus optical coherence tomography (OCT) fundus images and 24-2 visual fields of 438 patients were included. Ellipses were fitted to OD borders. IAA was calculated between marked retinal artery locations on a circle around OD. Blood vessel entry point on OD was marked to locate CRVTL. TL was measured as the angle between the lines fitted to OD clinical boundary and the Bruchs membrane edges on the horizontal B-scans. Ellipse rotation relative to the vertical axis defined ROT. Angle between the long axis of OD and the interartery line defined TO. CUR was determined by the inner limiting membrane on the horizontal B-scans. Linear regression models evaluated by Bayes Factors (BF) were used to determine the covariance structure between the parameters and SE as well as possible impacts of mean deviation (MD). Results Our results showed that CRVTL had the strongest relationship with SE, followed by ROT, TL, and IAA (BFs: 3.59 × 107, 2645, 1126, and 248, respectively). MD did not significantly modulate the relationship between ONH parameters and SE. Conclusion Our results suggest that SE should be considered when interpreting the OD and its circumpapillary region for diagnostic purposes. Translational Relevance The reported relationships between OD-related parameters and ametropia may help to decrease false-positive clinical diagnoses of optic neuropathies.


Journal of Glaucoma | 2016

Patterns of Retinal Nerve Fiber Layer Loss in Different Subtypes of Open Angle Glaucoma Using Spectral Domain Optical Coherence Tomography.

Neda Baniasadi; Eleftherios I. Paschalis; Mahdi Haghzadeh; Pallavi Ojha; Tobias Elze; Mufeed Mahd; Teresa C. Chen

Purpose of the Study:The purpose of the study was to determine whether there are different patterns of retinal nerve fiber layer (RNFL) thinning as measured by spectral domain optical coherence tomography (SD-OCT) for 4 subtypes of open angle glaucoma (OAG): primary OAG (POAG), normal tension glaucoma (NTG), pseudoexfoliation glaucoma (PXG), and pigmentary glaucoma (PDG) and to compare them with normal controls. Materials and Methods:SD-OCT RNFL thickness values were measured for 4 quadrants and for 4 sectors (ie, superior-nasal, superior-temporal, inferior-nasal, and inferior-temporal). Differences in RNFL thickness values between groups were analyzed using analysis of variance. Paired t tests were used for quadrant comparisons. Results:Two hundred eighty-five participants (102 POAG patients, 33 with NTG, 48 with PXG, 13 with PDG, and 89 normal patients) were included in this study. All 4 subtypes of OAG showed significant RNFL thinning in the superior, inferior, and nasal quadrants as well as the superior-temporal and inferior-temporal sectors (all P-values <0.0001) compared with normals. POAG and NTG patients had greater RNFL thinning inferiorly and inferior-temporally than superiorly (P-values: 0.002 to 0.018 and 0.006, respectively) compared with PXG patients. In contrast, PDG patients had greater RNFL thinning superiorly and superior-nasally than inferiorly compared with other OAG subtypes (ie, POAG, NTG, PXG groups, with P-values: 0.009, 0.003, 0.009, respectively). Of the 4 OAG subtypes, PXG patients exhibited the greatest degree of inter-eye RNFL asymmetry. Conclusions:This study suggests that SD-OCT may be able to detect significant differences in patterns of RNFL thinning for different subtypes of OAG.


Proceedings of SPIE | 2017

Impact of anatomical parameters on optical coherence tomography retinal nerve fiber layer thickness abnormality patterns

Neda Baniasadi; Mengyu Wang; Hui Wang; Qingying Jin; Mufeed Mahd; Tobias Elze

Purpose: To evaluate the effects of four anatomical parameters (angle between superior and inferior temporal retinal arteries [inter-artery angle, IAA], optic disc [OD] rotation, retinal curvature, and central retinal vessel trunk entry point location [CRVTL]) on retinal nerve fiber layer thickness (RNFLT) abnormality marks by OCT machines. Methods: Cirrus OCT circumpapillary RNFLT measurements and Humphrey visual fields (HVF 24-2) of 421 patients from a large glaucoma clinic were included. Ellipses were fitted to the OD borders. Ellipse rotation relative to the vertical axis defined OD rotation. CRVTL was manually marked on the horizontal axis of the ellipse on the OCT fundus image. IAA was calculated between manually marked retinal artery locations at the 1.73mm radius around OD. Retinal curvature was determined by the inner limiting membrane on the horizontal B-scan closest to the OD center. For each location on the circumpapillary scanning area, logistic regression was used to determine if each of the four parameters had a significant impact on RNFLT abnormality marks independent of disease severity. The results are presented on spatial maps of the entire scanning area. Results: Variations in IAA significantly influenced abnormality marks on 38.8% of the total scanning area, followed by CRVTL (19.2%) and retinal curvature (18.7%). The effect of OD rotation was negligible (<1%). Conclusions: A natural variation in IAA, retinal curvature, and CRVTL can affect OCT abnormality ratings, which may bias clinical diagnosis. Our spatial maps may help OCT manufacturers to introduce location specific norms to ensure that abnormality marks indicate ocular disease instead of variations in eye anatomy.


northeast bioengineering conference | 2011

SNR improvement in dedicated breast CT using energy weighting with photon counting detectors

Kesava Srinivas Kalluri; Stephen J. Glick; Mufeed Mahd

Photon counting x-ray detectors (PCD) promise to provide substantial improvements in computed tomography (CT) as compared to Cesium Iodide based energy integrating x-ray detectors (CsI-EID). This paper investigates the possible improvements in signal-to-noise ratio (SNR) obtained by using a cadmium zinc telluride (CZT) crystal based PCD with energy weighting (EW) in low dose breast CT (BCT).

Collaboration


Dive into the Mufeed Mahd's collaboration.

Top Co-Authors

Avatar

Stephen J. Glick

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

J. Michael O'Connor

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Clay Didier

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mini Das

University of Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Elze

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Vu Tran

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge