Muggundha Raoov
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muggundha Raoov.
Journal of Hazardous Materials | 2013
Muggundha Raoov; Sharifah Mohamad; Mohd Radzi Abas
Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) was firstly synthesized using functionalized β-Cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using toluene diisocyanate (TDI) linker to form insoluble βCD-BIMOTs-TDI. SEM characterization result shows that βCD-BIMOTs-TDI exhibits macropore size while the BET result shows low surface area (1.254 m(2)g(-1)). The unique properties of the ILs allow us to produce materials with different morphologies. The adsorption isotherm and kinetics of 2,4-dichlorophenol (2,4-DCP) onto βCD-BIMOTs-TDI is studied. Freundlich isotherm and pseudo-second order kinetics are found to be the best to represent the data for 2,4-DCP adsorption on the βCD-BIMOTs-TDI. The presence of macropores decreases the mass transfer resistance and increases the adsorption process by reducing the diffusion distance. The change in entropy (ΔS°) and heat of adsorption (ΔH°) for 2,4-DCP on βCD-BIMOTs-TDI were estimated as -55.99 J/Kmol and -18.10 J/mol, respectively. The negative value of Gibbs free energy (ΔG°) indicates that the adsorption process is thermodynamically feasible, spontaneous and chemically controlled. Finally, the interactions between the cavity of βCD-BIMOTs and 2,4-DCP are investigated and the results shows that the inclusion of the complex formation and π-π interaction are the main processes involved in the adsorption process.
International Journal of Molecular Sciences | 2013
Muggundha Raoov; Sharifah Mohamad; Mhd Radzi Bin Abas
β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m2/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V).
International Journal of Molecular Sciences | 2011
Sharifah Mohamad; Hemavathy Surikumaran; Muggundha Raoov; Tilagam Marimuthu; Kumuthini Chandrasekaram; Puvaneswary Subramaniam
This study focuses on the synthesis and characterization of the inclusion complex of β-Cyclodextrin (β-CD) with dicationic ionic liquid, 3,3′-(1,4-Phenylenebis [methylene]) bis(1-methyl-1H-imidazol-3-ium) di(bromide) (PhenmimBr). The inclusion complex was prepared at room temperature utilizing conventional kneading technique. Proton (1H) NMR and 2D (1H–1H) COSY NMR were the primary characterization tools employed to verify the formation of the inclusion complex. COSY spectra showed strong correlations between protons of imidazolium and protons of β-CD which indicates that the imidazolium ring of PhenmimBr has entered the cavity of β-CD. UV absorption indicated that β-CD reacts with PhenmimBr to form a 2:1 β-CD-PhenmimBr complex with an apparent formation constant of 2.61 × 105 mol&−2 L2. Other characterization studies such as UV, FT-IR, XRD, TGA, DSC and SEM studies were also used to further support the formation of the β-CD-PhenmimBr inclusion complex.
Talanta | 2014
Muggundha Raoov; Sharifah Mohamad; Mhd Radzi Bin Abas; Hemavathy Surikumaran
Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) is a new class of macroporous material and has great potential to be used as an SPE adsorbent material for extraction of phenols in river water samples. Six phenols, as model analytes, were extracted on a βCD-BIMOTs-TDI SPE cartridge, and then, eluted with 2 mL of methanol containing 1% acetic acid. The optimum experimental condition was 15 mL of sample volume (sample at pH 6) and 2 mL of methanol containing 1% acetic acid as an eluent solvent. The eluent concentration was determined by using Gas Chromatography-Flame Ionization Detector (GC-FID). Under optimized condition, high sensitivity (detection limits 0.23-0.35 µg/L) and good recoveries (87-116%) were achieved with satisfactory relative standard deviation (RSD) (0.1-1.7%). The developed βCD-BIMOTs-TDI-SPE was then compared with other adsorbents, and the obtained results showed that the βCD-BIMOTs-TDI exhibited higher extraction recovery due to the unique structure and properties. Finally, the βCD-BIMOTs-TDI was applied as a solid phase extraction sorbent for phenols determination under optimized condition, in river and tap waters, prior to the GC-FID separation.
International Journal of Molecular Sciences | 2013
Saleh Noorashikin; Muggundha Raoov; Sharifah Mohamad; Mhd Radzi Bin Abas
A cloud point extraction (CPE) process using non-ionic surfactant (DC193C) to extract selected paraben compounds from water samples was investigated using reversed phase high performance liquid chromatography (RP-HPLC). The CPE process with the presence of β-cyclodextrin (βCD) functionalized ionic liquid as a modifier (CPE-DC193C-βCD-IL) is a new extraction technique that has been applied on the optimization of parameters, i.e., pH, βCD-IL concentration and phase volume ratio. This CPE-DC193C-βCD-IL method is facilitated at 30 °C, showing great losses of water content in the surfactant-rich phase, resulting in a high pre-concentration factor and high distribution coefficient. The developed method CPE-DC193C-βCD-IL did show enhanced properties compared to the CPE method without the modifier (CPE-DC193C). The developed method of CPE-DC193C-βCD-IL gives an excellent performance on the detection of parabens from water samples with the limit of detection falling in the range of 0.013–0.038 μg mL−1. Finally, the inclusion complex formation, hydrogen bonding, and π–π interaction between the βCD-IL, benzyl paraben (ArP), and DC 193C were proven using 1H NMR and 2D NOESY spectroscopy.
Separation Science and Technology | 2015
Hemavathy Surikumaran; Sharifah Mohamad; Norazilawati Muhamad Sarih; Muggundha Raoov
Molecular imprinted polymer (MIP MAA-β-CD) with 2,4-dichlorophenol (2,4-DCP) and methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) as the template molecule and the functional monomer, respectively, was prepared and used in molecular imprinted-solid phase extraction (MISPE) for the extraction of phenols (2,4-dichlorophenol, 2-chlorophenol, 4-chloro-3-methylphenol, 4-chlorophenol, 2,4,6-trichlorophenol, and 2-nitrophenol) from water samples. The MISPE method was optimized prior to the determination using gas chromatography coupled with a flame ionization detector (GC-FID). Under the optimized conditions, the MIP MAA-β-CD sorbent showed good linearity (0.01-12 mgL−1), low limits of detection (0.14-0.75 µgL−1), and good repeatability (RSD 2.3-3.6%, n = 3). Good recoveries were obtained in the range of 97-115% for tap water and between 88-103% for river water. The developed MIP MAA-β-CD SPE was then compared with other adsorbents. The unique properties of β-CD and presence of imprinted cavities explains the higher extraction recoveries obtained for phenols when using MIP MAA-β-CD SPE.
RSC Advances | 2017
Masrudin Md Yusoff; Muggundha Raoov; Noorfatimah Yahaya; Noorashikin Md Salleh
An ionic liquid loaded magnetically confined polymeric mesoporous adsorbent based magnetic solid phase extraction (MSPE) procedure has been developed for the extraction and pre-concentration of parabens, namely methyl paraben (MP), ethyl paraben (EP), propyl paraben (PP) and butyl paraben (BP) from environmental and cosmetic samples. In this study, hydrophilic ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride (BMIM-Cl) was loaded onto the surface of MNP grafted β-cyclodextrin polymer (MNP-βCD-TDI) to form a new ionic liquid based magnetic polymeric adsorbent (IL-MNP-βCD-TDI). This is a new approach for the extraction of parabens followed by high-performance liquid chromatography with diode-array detection (HPLC-DAD). The formation of IL-MNP-βCD-TDI was characterized by FT-IR, CHN, BET, SEM, TEM, VSM and XRD techniques and compared with native MNPs and MNP-βCD-TDI. Several variables were optimized thoroughly including the types of adsorbents used, concentration of ionic liquid loaded, amount of adsorbent, extraction and desorption time, types and volumes of desorption solvent, sample pH, ionic strength, and sample volume. Under-optimized conditions, excellent linearity was achieved in the range of 0.3–500.0 μg L−1 for MP and EP, and 0.1–500.0 μg L−1 for PP and BP, with a correlation coefficient of R2 > 0.999. High sensitivity with limits of detection (LODs: 0.02 to 0.09 μg L−1) and quantification (LOQs: 0.05 to 0.28 μg L−1), and good recoveries (80.3–117.3%) were obtained with satisfactory relative standard deviations (RSDs: 1.1–14.9%). The developed material (IL-MNP-βCD-TDI) proved to be a simple and effective alternative adsorbent for the extraction of parabens from various types of environmental water samples and cosmetic products.
Critical Reviews in Analytical Chemistry | 2017
Boon Yih Hui; Muggundha Raoov; Nur Nadhirah Mohamad Zain; Sharifah Mohamad; Hasnah Osman
ABSTRACT The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
RSC Advances | 2018
Masrudin Md Yusoff; Noorfatimah Yahaya; Noorashikin Md Saleh; Muggundha Raoov
This study investigated the effectiveness of ionic liquids (ILs) loaded onto the surface of a polymeric adsorbent (βCD-TDI) grafted with modified magnetic nanoparticles (MNPs) via an analysis of water treatment, which resulted in high removal of selected endocrine-disrupting chemicals (parabens). The syntheses of MNPs, MNP-βCD-TDI, and IL-MNP-βCD-TDI were characterised and compared using Fourier transform infrared (FT-IR) spectroscopy, carbon–hydrogen–nitrogen (CHN) analysis, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) method, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The results of SEM and TEM indicated that the pore size distribution exhibited mesoporous characteristics with a small surface area (BET analysis: 42.95 m2 g−1). Furthermore, a preliminary sorption experiment demonstrated the ability of IL-MNP-βCD-TDI to enhance not only the sorption capacity, but also the removal of propyl paraben (PP), butyl paraben (BP), and benzyl paraben (ArP). The adsorption process appeared to be pH-dependent, and hence the optimum pH of 6 was selected for a subsequent batch adsorption study of all the studied parabens with an equilibrium time of 80 min. Next, in an attempt to investigate the interactions that occur between the adsorbent and the adsorbates, adsorption kinetics and isotherm studies were performed. All the studied parabens were found to best fit pseudo-second-order kinetics and the Freundlich isotherm with R2 > 0.98 at room temperature (298 K). The interaction of the host–guest inclusion complex and the π–π interaction between βCD and a selected paraben compound (ArP) were identified by performing 1H nuclear magnetic resonance (NMR), together with ultraviolet-visible (UV-vis) spectroscopic analysis. Finally, the adsorption efficiency of the developed material was practically tested on tap water, drain water, and industrial wastewater, which revealed a significant removal of parabens of up to 60–90% in comparison with a prior analysis.
Royal Society Open Science | 2018
N. I. Mohd; Muggundha Raoov; Sharifah Mohamad; Nur Nadhirah Mohamad Zain
A new cloud point methodology was successfully used for the extraction of carcinogenic pesticides in milk samples as a prior step to their determination by spectrophotometry. In this work, non-ionic silicone surfactant, also known as 3-(3-hydroxypropyl-heptatrimethylxyloxane), was chosen as a green extraction solvent because of its structure and properties. The effect of different parameters, such as the type of surfactant, concentration and volume of surfactant, pH, salt, temperature, incubation time and water content on the cloud point extraction of carcinogenic pesticides such as atrazine and propazine, was studied in detail and a set of optimum conditions was established. A good correlation coefficient (R2) in the range of 0.991–0.997 for all calibration curves was obtained. The limit of detection was 1.06 µg l−1 (atrazine) and 1.22 µg l−1 (propazine), and the limit of quantitation was 3.54 µg l−1 (atrazine) and 4.07 µg l−1 (propazine). Satisfactory recoveries in the range of 81–108% were determined in milk samples at 5 and 1000 µg l−1, respectively, with low relative standard deviation, n = 3 of 0.301–7.45% in milk matrices. The proposed method is very convenient, rapid, cost-effective and environmentally friendly for food analysis.