Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhammad Abu-Elmagd is active.

Publication


Featured researches published by Muhammad Abu-Elmagd.


Proceedings of the National Academy of Sciences of the United States of America | 2011

MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis

Katarzyna Goljanek-Whysall; Dylan Sweetman; Muhammad Abu-Elmagd; Elik Chapnik; Tamas Dalmay; Eran Hornstein; Andrea Münsterberg

Commitment of progenitors in the dermomyotome to myoblast fate is the first step in establishing the body musculature. Pax3 is a crucial transcription factor, important for skeletal muscle development and expressed in myogenic progenitors in the dermomyotome of developing somites and in migratory muscle progenitors that populate the limb buds. Down-regulation of Pax3 is essential to ignite the myogenic program, including up-regulation of myogenic regulators, Myf-5 and MyoD. MicroRNAs (miRNAs) confer robustness to developmental timing by posttranscriptional repression of genetic programs that are related to previous developmental stages or to alternative cell fates. Here we demonstrate that the muscle-specific miRNAs miR-1 and miR-206 directly target Pax3. Antagomir-mediated inhibition of miR-1/miR-206 led to delayed myogenic differentiation in developing somites, as shown by transient loss of myogenin expression. This correlated with increased Pax3 and was phenocopied using Pax3-specific target protectors. Loss of myogenin after antagomir injection was rescued by Pax3 knockdown using a splice morpholino, suggesting that miR-1/miR-206 control somite myogenesis primarily through interactions with Pax3. Our studies reveal an important role for miR-1/miR-206 in providing precision to the timing of somite myogenesis. We propose that posttranscriptional control of Pax3 downstream of miR-1/miR-206 is required to stabilize myoblast commitment and subsequent differentiation. Given that mutually exclusive expression of miRNAs and their targets is a prevailing theme in development, our findings suggest that miRNA may provide a general mechanism for the unequivocal commitment underlying stem cell differentiation.


Reproductive Biology and Endocrinology | 2015

Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring

Rakesh K. Sharma; Ashok Agarwal; Vikram K Rohra; Mourad Assidi; Muhammad Abu-Elmagd; Rola Turki

Over the last decade, there has been a significant increase in average paternal age when the first child is conceived, either due to increased life expectancy, widespread use of contraception, late marriages and other factors. While the effect of maternal ageing on fertilization and reproduction is well known and several studies have shown that women over 35 years have a higher risk of infertility, pregnancy complications, spontaneous abortion, congenital anomalies, and perinatal complications. The effect of paternal age on semen quality and reproductive function is controversial for several reasons. First, there is no universal definition for advanced paternal ageing. Secondly, the literature is full of studies with conflicting results, especially for the most common parameters tested. Advancing paternal age also has been associated with increased risk of genetic disease. Our exhaustive literature review has demonstrated negative effects on sperm quality and testicular functions with increasing paternal age. Epigenetics changes, DNA mutations along with chromosomal aneuploidies have been associated with increasing paternal age. In addition to increased risk of male infertility, paternal age has also been demonstrated to impact reproductive and fertility outcomes including a decrease in IVF/ICSI success rate and increasing rate of preterm birth. Increasing paternal age has shown to increase the incidence of different types of disorders like autism, schizophrenia, bipolar disorders, and childhood leukemia in the progeny. It is thereby essential to educate the infertile couples on the disturbing links between increased paternal age and rising disorders in their offspring, to better counsel them during their reproductive years.


Developmental Dynamics | 2004

Matrix metalloproteinase genes in Xenopus development

Michael Harrison; Muhammad Abu-Elmagd; Timothy Grocott; Clara Yates; Jelena Gavrilovic; Grant N. Wheeler

Matrix metalloproteinases (MMPs) are a large family of proteins in vertebrates, consisting of over 24 genes in humans, only a few of which have been identified in Xenopus. Three genes coding for MMPs in Xenopus have been identified and their expression studied during development. The membrane‐bound XMMP‐14 and ‐15 (XMT1‐MMP and XMT2‐MMP) both showed restricted expression patterns, the former principally localising to cranial neural crest tissues and the latter to the epidermis of the embryo. XMMP‐7 codes for an MMP that lacks the hemopexin‐like domain. It is expressed exclusively in macrophages or other myeloid cell types from early in development. Developmental Dynamics 231:214–220, 2004.


BMC Cancer | 2015

Specific nutrient combination effects on tax, NF- κB and MMP-9 in human T-cell lymphotropic virus -1 positive malignant T-lymphocytes

Steve Harakeh; Rania Azar; Esam I. Azhar; Ghazi A. Damanhouri; Mourad Assidi; Muhammad Abu-Elmagd; Mohammed H. Al-Qahtani; Taha Kumosani; Aleksandra Niedzwiecki; M. Rath; Ahmed M. Al-Hejin; Elie K. Barbour; Mona Diab-Assaf

BackgroundAdult T-cell Leukemia (ATL) is a disease with no known cure. The disease manifests itself as an aggressive proliferation of CD4+ cells with the human T-cell Lymphotropic virus type 1 (HTLV-1). The leukemogenesis of the virus is mainly attributed to the viral oncoprotein. Tax activates the Nuclear Factor kappa B (NF-κB) which stimulates the activity and expression of the matrix metalloproteinase-9 (MMP-9). The objective of this study was to investigate the efficacy of a specific nutrient synergy (SNS) on proliferation, Tax expression, NF-κB levels as well as on MMP-9 activity and expression both at the transcriptional and translational levels in two HTLV-1 positive cell lines, HuT-102 and C91-PL at 48h and 96h of incubation. Cytotoxicity of Epigallocatechin-3-gallate (EGCG) was assayed using CytoTox 96 Non-radioactive and proliferation was measured using Cell Titer96TM Nonradioactive Cell Proliferation kit (MTT- based assay). Enzyme linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA) were used to assess the effect of SNS on NF-κB mobility. Zymography was used to determine the effects of SNS on the activity and secretion of MMP-9. The expression of MMP-9 was done using RT-PCR at the translational level and Immunoblotting at the transcriptional level.ResultsA significant inhibition of proliferation was seen in both cell lines starting at a concentration of 200μg/ml and in a dose dependent manner. SNS induced a dose dependent decrease in Tax expression, which was paralleled by a down-regulation of the nuclearization of NF-κB. This culminated in the inhibition of the activity of MMP-9 and their expression both at the transcriptional and translational levels.ConclusionsThe results of this study indicate that a specific nutrient synergy targeted multiple levels pertinent to the progression of ATL. Its activity was mediated through the NF-κB pathway, and hence has the potential to be integrated in the treatment of this disease as a natural potent anticancer agent.


Mechanisms of Development | 2008

Three matrix metalloproteinases are required in vivo for macrophage migration during embryonic development

Matthew L. Tomlinson; Carla Garcia-Morales; Muhammad Abu-Elmagd; Grant N. Wheeler

Macrophages are essential in development, repair and pathology of a variety of tissues via their roles in tissue remodelling, wound healing and inflammation. These biological functions are also associated with a number of human diseases, for example tumour associated macrophages have well defined functions in cancer progression. Xenopus embryonic macrophages arise from a haematopoietic stem cell population by direct differentiation and act as the main mechanism of host defence, before lymphoid cells and a circulatory system have developed. This function is conserved in mouse and human development. Macrophages express a number of matrix metalloproteinases (MMPs), which are central to their function. MMPs are a large family of zinc-dependent endoproteases with multiple roles in extracellular matrix remodelling and the modulation of signalling pathways. We have previously shown MMP-7 to be expressed by Xenopus embryonic macrophages. Here we investigate the role of MMP-7 and two other MMPs (MMP-18 and MMP-9) that are also expressed in the migrating macrophages. Using morpholino (MO) mediated knockdown of each of the MMPs we demonstrate that they are necessary for normal macrophage migration in vivo. The loss-of-function effect can be rescued using the specific MMPs, altered to be resistant to morpholinos but not by overexpression of the other MMPs. Double and triple morpholino knockdowns further suggest that these MMPs act combinatorily to promote embryonic macrophage migration. Thus, our results imply that these three MMPs have distinct functions, which together are crucial to mediate macrophage migration in the developing embryo. This demonstrates conclusively that MMPs are required for normal macrophage cell migration in the whole organism.


Developmental Biology | 2010

Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis

Muhammad Abu-Elmagd; Lesley Robson; Dylan Sweetman; Julia Hadley; Philippa Francis-West; Andrea Münsterberg

Wnt signaling has been implicated in somite, limb, and branchial arch myogenesis but the mechanisms and roles are not clear. We now show that Wnt signaling via Lef1 acts to regulate the number of premyogenic cells in somites but does not regulate myogenic initiation in the limb bud or maintenance in the first or second branchial arch. We have also analysed the function and regulation of a putative downstream transcriptional target of canonical Wnt signaling, Pitx2. We show that loss-of-function of Pitx2 decreases the number of myogenic cells in the somite, whereas overexpression increases myocyte number particularly in the epaxial region of the myotome. Increased numbers of mitotic cells were observed following overexpression of Pitx2 or an activated form of Lef1, suggesting an effect on cell proliferation. In addition, we show that Pitx2 expression is regulated by canonical Wnt signaling in the epaxial somite and second branchial arch, but not in the limb or the first branchial arch. These results suggest that Wnt/Lef1 signaling regulates epaxial myogenesis via Pitx2 but that this link is uncoupled in other regions of the body, emphasizing the unique molecular networks that control the development of various muscles in vertebrates.


Asian Journal of Andrology | 2016

Bibliometrics: tracking research impact by selecting the appropriate metrics

Ashok Agarwal; Damayanthi Durairajanayagam; Sindhuja Tatagari; Sandro C. Esteves; Avi Harlev; Ralf Henkel; Shubhadeep Roychoudhury; Sheryl Homa; Nicolás Garrido Puchalt; Ranjith Ramasamy; Ahmad Majzoub; Kim Dao Ly; Eva Tvrdá; Mourad Assidi; Kavindra Kumar Kesari; Reecha Sharma; Saleem Ali Banihani; Edmund Y. Ko; Muhammad Abu-Elmagd; Jaime Gosálvez; Asher Bashiri

Traditionally, the success of a researcher is assessed by the number of publications he or she publishes in peer-reviewed, indexed, high impact journals. This essential yardstick, often referred to as the impact of a specific researcher, is assessed through the use of various metrics. While researchers may be acquainted with such matrices, many do not know how to use them to enhance their careers. In addition to these metrics, a number of other factors should be taken into consideration to objectively evaluate a scientist′s profile as a researcher and academician. Moreover, each metric has its own limitations that need to be considered when selecting an appropriate metric for evaluation. This paper provides a broad overview of the wide array of metrics currently in use in academia and research. Popular metrics are discussed and defined, including traditional metrics and article-level metrics, some of which are applied to researchers for a greater understanding of a particular concept, including varicocele that is the thematic area of this Special Issue of Asian Journal of Andrology. We recommend the combined use of quantitative and qualitative evaluation using judiciously selected metrics for a more objective assessment of scholarly output and research impact.


BMC Medical Genomics | 2015

Individualized medicine enabled by genomics in Saudi Arabia

Muhammad Abu-Elmagd; Mourad Assidi; Hans-Juergen Schulten; Ashraf Dallol; Peter Natesan Pushparaj; Farid Ahmed; Stephen W. Scherer; Mohammed H. Al-Qahtani

The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up.


BMC Genomics | 2016

More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel DNA sequencing

Angie Ambers; Jennifer D. Churchill; Jonathan L. King; Monika Stoljarova; Harrell Gill-King; Mourad Assidi; Muhammad Abu-Elmagd; Abdelbaset Buhmeida; Bruce Budowle

BackgroundAlthough the primary objective of forensic DNA analyses of unidentified human remains is positive identification, cases involving historical or archaeological skeletal remains often lack reference samples for comparison. Massively parallel sequencing (MPS) offers an opportunity to provide biometric data in such cases, and these cases provide valuable data on the feasibility of applying MPS for characterization of modern forensic casework samples. In this study, MPS was used to characterize 140-year-old human skeletal remains discovered at a historical site in Deadwood, South Dakota, United States. The remains were in an unmarked grave and there were no records or other metadata available regarding the identity of the individual. Due to the high throughput of MPS, a variety of biometric markers could be typed using a single sample.ResultsUsing MPS and suitable forensic genetic markers, more relevant information could be obtained from a limited quantity and quality sample. Results were obtained for 25/26 Y-STRs, 34/34 Y SNPs, 166/166 ancestry-informative SNPs, 24/24 phenotype-informative SNPs, 102/102 human identity SNPs, 27/29 autosomal STRs (plus amelogenin), and 4/8 X-STRs (as well as ten regions of mtDNA). The Y-chromosome (Y-STR, Y-SNP) and mtDNA profiles of the unidentified skeletal remains are consistent with the R1b and H1 haplogroups, respectively. Both of these haplogroups are the most common haplogroups in Western Europe. Ancestry-informative SNP analysis also supported European ancestry. The genetic results are consistent with anthropological findings that the remains belong to a male of European ancestry (Caucasian). Phenotype-informative SNP data provided strong support that the individual had light red hair and brown eyes.ConclusionsThis study is among the first to genetically characterize historical human remains with forensic genetic marker kits specifically designed for MPS. The outcome demonstrates that substantially more genetic information can be obtained from the same initial quantities of DNA as that of current CE-based analyses.


Developmental Biology | 2009

Frizzled-10 promotes sensory neuron development in Xenopus embryos

Carla Garcia-Morales; Chiung-Hui Liu; Muhammad Abu-Elmagd; Mohammad K. Hajihosseini; Grant N. Wheeler

Formation of the vertebrate nervous system requires coordinated cell-cell interactions, intracellular signalling events, gene transcription, and morphogenetic cell movements. Wnt signalling has been involved in regulating a wide variety of biological processes such as embryonic patterning, cell proliferation, cell polarity, motility, and the specification of cell fate. Wnt ligands associate with their receptors, members of the frizzled family (Fz). In Xenopus, five members of the frizzled family are expressed in the early nervous system. We have investigated the role of Xenopus frizzled-10 (Fz10) in neural development. We show that Fz10 is expressed in the dorsal neural ectoderm and neural folds in the region where primary sensory neurons develop. Fz10 mediates canonical Wnt signalling and interacts with Wnt1 and Wnt8 but not Wnt3a as shown in synergy assays. We find that Fz10 is required for the late stages of sensory neuron differentiation. Overexpression of Fz10 in Xenopus leads to an increase in the number of sensory neurons. Loss of Fz10 function using morpholinos inhibits the development of sensory neurons in Xenopus at later stages of neurogenesis and this can be rescued by co-injection of modified Fz10B and beta-catenin. In mouse P19 cells induced by retinoic acid to undergo neural differentiation, overexpression of Xenopus Fz10 leads to an increase in the number of neurons generated while siRNA knockdown of endogenous mouse Fz10 inhibits neurogenesis. Thus we propose Fz10 mediates Wnt1 signalling to determine sensory neural differentiation in Xenopus in vivo and in mouse cell culture.

Collaboration


Dive into the Muhammad Abu-Elmagd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mourad Assidi

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adeel Chaudhary

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Ashraf Dallol

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamdooh Gari

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge