Muhammad Dawood Husain
NED University of Engineering and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammad Dawood Husain.
Sensors | 2013
Ozgur Atalay; William Richard Kennon; Muhammad Dawood Husain
The design and development of textile-based strain sensors has been a focus of research and many investigators have studied this subject. This paper presents a new textile-based strain sensor design and shows the effect of base fabric parameters on its sensing properties. Sensing fabric could be used to measure articulations of the human body in the real environment. The strain sensing fabric was produced by using electronic flat-bed knitting technology; the base fabric was produced with elastomeric yarns in an interlock arrangement and a conductive yarn was embedded in this substrate to create a series of single loop structures. Experimental results show that there is a strong relationship between base fabric parameters and sensor properties.
Journal of Industrial Textiles | 2014
Muhammad Dawood Husain; Richard Kennon; T Dias
A temperature sensing fabric is described, along with the manufacturing techniques required to produce the fabric on a computerised flat-bed knitting machine. Knitted sensing fabrics with copper, nickel and tungsten wire elements have been produced with resistances ranging from 3 to 130 Ω. The most successful samples have been created using textile-wrapped, enamelled wire and not only the textile character of the sensing element was enhanced, but also its tensile strength. A mathematical relationship has been derived between the temperature and resistance of the knitted sensors and this can be used to optimise its dimensions to achieve a targeted reference resistance. The temperature-resistance curves demonstrate a linear trend with a coefficient of determination in the range of 0.99–0.999 and can be integrated into garments to monitor skin temperatures.
Journal of Industrial Textiles | 2017
Ozgur Atalay; Asli Tuncay; Muhammad Dawood Husain; William Richard Kennon
In this study, weft-knitted strain-sensing structures are described, along with the materials and manufacturing techniques required to produce the fabrics on a computerised flat-bed knitting machine. Knitted sensing fabrics with conductive yarns, i.e. silver-plated nylon yarn and polyester-blended stainless steel yarn have been created with different design possibilities. A laboratory test set-up was built to characterise the knitted sensors and the resulting equivalent resistance under the different level of strains. The most successful samples have been realised through a series of single conductive courses within the interlock base fabric structure using silver-plated nylon in terms of responsivity, repeatability and lower electrical signal drift. Deficiencies associated with strain-sensing structures realised through the intermeshing of conductive yarns have also been addressed.
Journal of Industrial Textiles | 2017
Asli Atalay; Ozgur Atalay; Muhammad Dawood Husain; Anura Fernando; Prasad Potluri
Continuous measurement of cardio-respiratory signals offers various kinds of information valuable for the diagnosis of disease and management of the disease process. The article reports the development of the Piezofilm yarn sensor for healthcare applications, and investigates its performance by monitoring cardio-respiratory signals of human body over an extended period of time. Piezofilm yarn sensor was developed by embedding the thin PVDF strips within the textile yarn. The working mechanism of the Piezofilm yarn sensor is based on voltage generation due to the applied stress. In order to deploy the Piezofilm yarn sensor in the application environment, it was integrated into the knitted textile fabric and then sewn to form belt to be placed at the chest wall and wrist area. The raw signals were acquired through the Piezofilm lab amplifier, National Instrument data acquisition device and SignalExpress software. Fast Fourier Transform analysis was performed to calculate the average cardio-respiratory signal frequencies. Based on Fast Fourier Transform analysis, an additional signal-processing step was added to eliminate the unwanted mechanical interference and body signals by using an Infinite Impulse Response band pass filter. The Piezofilm yarn sensor embedded sensing fabric was able to measure both respiratory rate and heart beat rate under static and dynamic conditions. The wrist area measurements for heart beat signals were found to be more uniform in comparison to the chest area measurements. Apart from the general healthcare, this sensing fabric could also be used in studies related to biorhythms, sports, detection of sleep apnea and heart problems.
Autex Research Journal | 2017
Muhammad Dawood Husain; Ozgur Atalay; Asli Atalay; Richard Kennon
Abstract A test rig is described, for the measurement of temperature and resistance parameters of a Temperature Sensing Fabric (TSF) for calibration purpose. The equipment incorporated a temperature-controlled hotplate, two copper plates, eight thermocouples, a temperature data-logger and a four-wire high-resolution resistance measuring multimeter. The copper plates were positioned above and below the TSF and in physical contact with its surfaces, so that a uniform thermal environment might be provided. The temperature of TSF was estimated by the measurement of temperature profiles of the two copper plates. Temperature-resistance graphs were created for all the tests, which were carried out over the range of 20 to 50°C, and they showed that the temperature and resistance values were not only repeatable but also reproducible, with only minor variations. The comparative analysis between the temperature-resistance test data and the temperature-resistance reference profile showed that the error in estimation of temperature of the sensing element was less than ±0.2°C. It was also found that the rig not only provided a stable and homogenous thermal environment but also offered the capability of accurately measuring the temperature and resistance parameters. The Temperature Sensing Fabric is suitable for integration into garments for continuous measurement of human body temperature in clinical and non-clinical settings.
Fibers | 2013
Muhammad Dawood Husain; Richard Kennon
AATCC Journal of Research | 2016
Muhammad Dawood Husain; Shenela Naqvi; Ozgur Atalay; Syed Talha Ali Hamdani; Richard Kennon
International Journal of Textile Science | 2013
Muhammad Dawood Husain; Ozgur Atalay; Richard Kennon
Journal of Industrial Textiles | 2017
Shenela Naqvi; Muhammad Dawood Husain; Prasad Potluri; Parthasarathi Mandal; Philip S. Lewis
Tekstil Ve Konfeksiyon | 2017
Ozgur Atalay; Asli Atalay; Muhammad Dawood Husain