Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhammad Imran Din is active.

Publication


Featured researches published by Muhammad Imran Din.


International Journal of Biological Macromolecules | 2013

Biosorption potentials of a novel green biosorbent Saccharum bengalense containing cellulose as carbohydrate polymer for removal of Ni (II) ions from aqueous solutions.

Muhammad Imran Din; Muhammad Latif Mirza

In this research work, the potential of a novel green material obtained from Saccharum bengalense (SB) plant was investigated for the removal of Ni (II) ions from aqueous solution. Biomaterial SB composed of cellulose macromolecules and was used without any chemical treatment. Batch experiments were performed by considering the effect of contact time, SB concentration, pH of the solution and temperature. Results revealed that ∼87% of Ni was removed from aqueous solution at optimum conditions. Three typical kinetic models namely, pseudo first order, pseudo second order and Elovich equations were applied to interpret the kinetic data. To investigate the rate determining step, the intra-particle diffusion model was applied on the experimental data. The sorption process was well explained with pseudo second-order kinetic model. Adsorption isothermal data was examined by applying classical two parameters (Langmuir, Freundlich, Timken and Dubinin-Radushkevich) and three parameters (Redlich-Peterson, Toth and Sips models) and four parameters Fritz Schlunder Isotherm models. Based on R(2) and χ(2) the equilibrium sorption data was better fitted to Langmuir and Sips isotherm model than any other model. Thermodynamics parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated respectively, which revealed the spontaneous, endothermic and feasible nature of adsorption process. The results of the present investigation suggest that S. bengalense can be used as an environmentally benign and low cost biomaterial for nickel removal from aqueous solution.


Hydrology: Current Research | 2017

Simultaneous removal of Pb(II), Cd(II) and Cu(II) from aqueous solutions by adsorption on Triticum aestivum - a green approach

Sana Zulfiqar Ali; Makshoof Athar; Muhammad Salman; Muhammad Imran Din

The presence of heavy metals in industrial effluents as a single component is generally very rare. The present study provides information about adsorption behaviour of lead, cadmium and copper in single and multi-component system using triticum aestivum (wheat straw) as adsorbent. It has been shown that adsorption of a certain metal ion is greatly affected by the presence of other metal ions. Effects of process parameters (adsorbent dose, contact time, pH, agitation speed etc.) have been studied. pH 4-6 have been found suitable for metal removal. Adsorption mechanism has been evaluated using five adsorption isotherm models (Langmuir, Freundlich, Temkin, Harkin- Jura and Halsey Isotherms). Removal of cadmium in multi-component system is greater as compared in single component system indicating the metal competition for adsorption sites. Kinetic and thermodynamic parameters have also been calculated and obtained results were found closely related to the reported literature. Positive values of ?H° for lead, cadmium and copper shows feasibility of the process and the spontaneous nature of adsorption.


Analytical Letters | 2015

Green Synthesis and Characterization of Silver Nanoparticles Using Ferocactus echidne Extract as a Reducing Agent

Asma Tufail Shah; Muhammad Imran Din; Shahid Bashir; Muhammad Abdul Qadir; Farzana Rashid

The green synthesis of silver nanoparticles using an aqueous extract of Ferocactus echidne(a member of the cactus family) as a reducing agent is reported. It is simple, efficient, rapid, and ecologically friendly compared to chemical-mediated methods. Ferocactus echidne is a plant of high medicinal value and rich in polyphenolic antioxidants. The extraction is simple and the product rapidly reduces silver ions without involvement of any external chemical agent. The reduction of silver nanoparticles was characterized by ultraviolet-visible spectrometry as a function of time and concentration. The results show that Ferocactus echidne reduces silver ions within 6 h depending upon the concentration. Further increases in reaction time may result in a blue shift, indicating an increase in particle size, whereas concentration had a minor effect on the particle size. The structure of synthesized nanoparticles was investigated by infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The infrared spectra indicated the association of organic materials with silver nanoparticles to serve as capping agents. Scanning electron micrographs showed that synthesized silver nanoparticles were nearly uniform and elliptical in shape with diameters of 20 to 60 nm. X-ray diffraction confirmed the formation of silver nanoparticles with an approximate 20 nm particle size calculated using the Debye-Scherer equation. Biological tests revealed that the silver nanoparticles were active against gram positive and negative bacteria( Escherichia coli and Staphylococcus aureus) and fungi (Candida albicans), indicating their broad spectrum antibiotic and antifungal abilities.


Journal of Chemistry | 2013

Thermodynamics of Biosorption for Removal of Co(II) Ions by an Efficient and Ecofriendly Biosorbent (Saccharum bengalense): Kinetics and Isotherm Modeling

Muhammad Imran Din; Muhammad Latif Mirza; Sadia Ata; Makshoof Athar; Ijaz Ul Mohsin

In this research work, a low-cost biomass derived from the pulp of Saccharum bengalense (SB) was used as an adsorbent material/biosorbent for the removal of Co(II) ions from aqueous solution. Langmuir, Freundlich Timken, and Dubinin-Radushkevich (D-R) adsorption isotherms have been applied to further define the mechanism of sorption. From the comparison of different adsorption isotherm models, it was found that biosorption of Co(II) by SB followed Langmuir and Freundlich models. The sorption capacity for cobalt of Saccharum bengalense was ( mg/g) at 323K. A comparison of kinetic models applied to the adsorption of Co(II) onto Saccharum bengalense was evaluated for the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion and Banghams kinetics models. It was found that the pseudo-second-order mechanism is predominant. Activation parameters evaluated from thermodynamics and kinetic parameters such as free energy change ,  kJ/mol), enthalpy change ,  kJ/mol), and entropy change ,  kJ/mol) revealed the spontaneous, endothermic, and feasible nature of adsorption process. The results of the present investigation suggested that Saccharum bengalense (SB) can be used as an environmentally and economically feasible biosorbent for the removal of Co(II) from aqueous solutions.


Analytical Letters | 2017

Synthesis, Characterization, and Applications of Copper Nanoparticles

Muhammad Imran Din; Rida Rehan

ABSTRACT Copper nanoparticles with different structural properties and effective biological effects may be fabricated using new green protocols. The control over particle size and in turn size-dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for the synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. Biological methods involve the use of plant extracts, bacteria, and fungi. Commendable work has been done regarding the synthesis and stability of copper nanoparticles. There is a need to summarize the behavior of copper nanoparticles in different media under various conditions. Here, a complete list of the literature on the synthesis of copper nanoparticles, their properties, stabilizing agents, factors affecting the morphology, and their applications is presented. The importance of copper nanoparticles compared to other metal nanoparticles are due to high conductivity. Methods for the synthesis of copper nanoparticles, including green protocols using plants and micro-organisms compared chemical methods, have also been reviewed.


International Journal of Phytoremediation | 2014

Adsorption Optimization of Lead (II) Using Saccharum Bengalense as a Non-Conventional Low Cost Biosorbent: Isotherm and Thermodynamics Modeling

Muhammad Imran Din; Muhammad Latif Mirza; Asma Tufail Shah; Muhammad Makshoof Athar

In the present study a novel biomass, derived from the pulp of Saccharum bengalense, was used as an adsorbent material for the removal of Pb (II) ions from aqueous solution. After 50 minutes contact time, almost 92% lead removal was possible at pH 6.0 under batch test conditions. The experimental data was analyzed using Langmuir, Freundlich, Timken and Dubinin-Radushkevich two parameters isotherm model, three parameters Redlich—Peterson, Sip and Toth models and four parameters Fritz Schlunder isotherm models. Langmuir, Redlich—Peterson and Fritz-Schlunder models were found to be the best fit models. Kinetic studies revealed that the sorption process was well explained with pseudo second-order kinetic model. Thermodynamic parameters including free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated and reveal the spontaneous, endothermic and feasible nature of the adsorption process. The thermodynamic parameters of activation (ΔG #, ΔH #and ΔS #) were calculated from the pseudo-second order rate constant by using the Eyring equation. Results showed that Pb (II) adsorption onto SB is an associated mechanism and the reorientation step is entropy controlled.


International Journal of Analytical Chemistry | 2016

Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

Muhammad Imran Din; Aneela Rani

Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods.


Journal of Automated Methods & Management in Chemistry | 2012

Equilibrium, Thermodynamics, and Kinetic Sorption Studies for the Removal of Coomassie Brilliant Blue on Wheat Bran as a Low-Cost Adsorbent

Sadia Ata; Muhammad Imran Din; Atta Rasool; Imran Qasim; Ijaz Ul Mohsin

The sorption studies of coomassie brilliant blue (CBB) from aqueous solution have been carried out on wheat bran (WB). Coomassie brilliant blue on wheat bran was used to study the adsorption behavior under various parameters such as pH, dosage amount, and contact time. It was observed that under optimized conditions up to 95.70% dye could be removed from solution onto WB. Langmuir and Freundlich adsorption isotherms were used to elaborate the results. Freundlich model was found to be fitted well and favored multilayer adsorption. The Freundlich constants n and KF were determined as 0.53 and 2.5 × 10−4. Thermodynamic parameters such as ΔG, ΔH, and ΔS studied were taking into account, showed spontaneous and favorable reaction for coomassie brilliant blue on wheat bran. The maximum adsorption capacity q m was found to be 6.410 mg/g. The investigations show that non treated WB is a low-cost adsorbent for the removal of dyes from textile industry effluents.


Desalination and Water Treatment | 2013

Biosorption of toxic congo red dye from aqueous solution by eco-friendly biosorbent Saccharum bengalense: kinetics and thermodynamics

Muhammad Imran Din; Muhammad Latif Mirza; Muhammad Makshoof Athar; Asadullah Madni; Saeed Ahmad

Abstract In the present study, Saccharum bengalense (SB), a potential biosorbent, was investigated for the removal of toxic Congo red (CR) dye. The effect of various operating variables, viz. adsorbent dosage, pH, contact time, and temperature on the removal of dye has been studied. Almost 94% removal of dye is possible after 50 min at pH 2.0 under batch test conditions. It was found that a pseudo-second-order mechanism was predominant and the overall rate of the dye adsorption process appears to be controlled by more than one step. The intra-particle diffusion model was applied to investigate the rate determining step. Langmuir, Freundlich, and Dubinin–Radushkevich adsorption isotherm models were applied to describe the biosorption isotherm. The biosorption data were better represented by the Langmuir model and the biosorption capacity (q max) of SB for CR was achieved at 125 mg/g. Thermodynamic parameters such as standard free energy change (ΔG°), standard enthalpy change (ΔH°), and standard entropy cha...


International Journal of Phytoremediation | 2016

Microwave treated Salvadora oleoides as an eco-friendly biosorbent for the removal of toxic methyl violet dye from aqueous solution--A green approach.

Muhammad Imran Din; Munir H; Naz A; Intisar A; Makshoof Mn; Muhammad Latif Mirza

In the present study, microwave treated Salvadora oleoides (MW-SO) has been investigated as a potential biosorbent for the removal of toxic methyl violet dye. A batch adsorption method was experimented for biosorptive removal of toxic methyl violet dye from the aqueous solution. The effect of various operating variables, viz., adsorbent dosage, pH, contact time and temperature on the removal of the dye was studied and it was found that nearly 99% removal of the dye was possible under optimum conditions. Kinetic study revealed that a pseudo-second-order mechanism was predominant and the overall process of the dye adsorption involved more than one step. Hence, in order to investigate the rate determining step, intra-particle diffusion model was applied. Adsorption equilibrium study was made by analyzing Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) adsorption isotherm models and the biosorption data was found to be best represented by the Langmuir model. The biosorption efficiency of MW-SO was also compared with unmodified material, Salvadora oleoides (SO). It was found that the sorption capacity (qmax) increased from 58.5 mg/g to 219.7 mg/g on MW treatment. Determination of thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) confirmed the spontaneous, endothermic and feasible nature of the adsorption process. The preparation of MW-SO did not require any additional chemical treatment and a high percentage removal of methyl violet dye was obtained in much lesser time. Thus, it is in agreement with the principles of green chemistry. The results of the present research work suggest that MW-SO can be used as an environmentally friendly and economical alternative biosorbent for the removal of methyl violet dye from aqueous solutions.

Collaboration


Dive into the Muhammad Imran Din's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asma Tufail Shah

COMSATS Institute of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Makshoof Athar

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Sadia Ata

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Aneela Rani

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Atta Rasool

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azeem Intisar

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar

Ghazia Ahmad

University of the Punjab

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge