Muhammad Shakeel
South China Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammad Shakeel.
Outlook on Agriculture | 2016
Wajid Nasim; Hatem Belhouchette; Ashfaq Ahmad; Muhammad Habib-ur-Rahman; Khawar Jabran; Kalim Ullah; Shah Fahad; Muhammad Shakeel; Gerrit Hoogenboom
Climate change, food security, water scarcity and environmental sustainability have all become major global challenges. As a consequence, improving resource use efficiency is an important aspect of increasing crop productivity. Crop models are increasingly being used as tools for supporting strategic and tactical decision making under varying agro-climatic and socioeconomic conditions. These tools can also support climate change assessment and the evaluation of adaptation strategies to limit the adverse impacts of climate change. In this paper, the authors report on a case study conducted to assess the potential impact of climate change on grain yield in sunflower under arid, semi-arid and subhumid conditions in the Punjab region of Pakistan. Experimental data obtained between 2008 and 2009 were used for model evaluation. The study focused on the impacts of incremental temperature change on sunflower production. The modelling suggests that grain yield could reduce by up to 15% by the 2020s with an average increase in temperature of +1°C, and by up to 25% if temperatures increased by up to 2°C for the 2050s. Adaptation strategies showed that, if the crop were sown between 14 days (for 2020) and 21 days (for 2050) earlier than the current date (last week in February), yield losses could potentially be reduced.
Environmental Science and Pollution Research | 2017
Muhammad Shakeel; Muhammad Farooq; Wajid Nasim; Waseem Akram; Fawad Zafar Ahmad Khan; Waqar Jaleel; Xun Zhu; Haichen Yin; Shuzhong Li; Shah Fahad; Saddam Hussain; Bhagirath S. Chauhan; Fengliang Jin
The diamondback moth, Plutella xylostella, is recognized as a widely distributed destructive insect pest of Brassica worldwide. The management of this pest is a serious issue, and an estimated annual cost of its management has reached approximately US
Biotechnology Letters | 2018
Muhammad Shakeel; Alicia Rodríguez; Urfa Bin Tahir; Fengliang Jin
4 billion. Despite the fact that chemicals are a serious threat to the environment, lots of chemicals are applied for controlling various insect pests especially P. xylostella. An overreliance on chemical control has not only led to the evolution of resistance to insecticides and to a reduction of natural enemies but also has polluted various components of water, air, and soil ecosystem. In the present scenario, there is a need to implement an environmentally friendly integrated pest management (IPM) approach with new management tactics (microbial control, biological control, cultural control, mating disruption, insecticide rotation strategies, and plant resistance) for an alternative to chemical control. The IPM approach is not only economically beneficial but also reduces the environmental and health risks. The present review synthesizes published information on the insecticide resistance against P. xylostella and emphasizes on adopting an alternative environmentally friendly IPM approach for controlling P. xylostella in China.
Scientific Reports | 2017
Muhammad Shakeel; Xiaoxia Xu; Jin Xu; Xun Zhu; Shuzhong Li; Xianqiang Zhou; Jialin Yu; Xiaojing Xu; Qiongbo Hu; Xiaoqiang Yu; Fengliang Jin
Whenever gene expression is being examined, it is essential that a normalization process is carried out to eliminate non-biological variations. The use of reference genes, such as glyceraldehyde-3-phosphate dehydrogenase, actin, and ribosomal protein genes, is the usual method of choice for normalizing gene expression. Although reference genes are used to normalize target gene expression, a major problem is that the stability of these genes differs among tissues, developmental stages, species, and responses to abiotic factors. Therefore, the use and validation of multiple reference genes are required. This review discusses the reasons that why RT-qPCR has become the preferred method for validating results of gene expression profiles, the use of specific and non-specific dyes and the importance of use of primers and probes for qPCR as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. The conflicts arising in the use of classical reference genes in gene normalization and their replacement with novel references are also discussed by citing the high stability and low stability of classical and novel reference genes under various biotic and abiotic experimental conditions by employing various methods applied for the reference genes amplification.
Frontiers in Microbiology | 2017
Jin Xu; Xiaoxia Xu; Muhammad Shakeel; Shuzhong Li; Shuang Wang; Xianqiang Zhou; Jialin Yu; Xiaojing Xu; Xiaoqiang Yu; Fengliang Jin
Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.
Environmental Science and Pollution Research | 2018
Muhammad Shahid Arain; Muhammad Shakeel; Mohammed Esmail Abdalla Elzaki; Muhammad Farooq; Muhammad Hafeez; Muhammad Shahid; Syed Ali Haider Shah; Fawad Zafar Ahmad Khan; Qaiser Shakeel; Abdalla Markaz Abdalla Salim; Guo-Qing Li
Most, if not all, entomopathogenic fungi have been used as alternative control agents to decrease the insect resistance and harmful effects of the insecticides on the environment. Among them, Isaria fumosorosea has also shown great potential to control different insect pests. In the present study, we explored the immune response of P. xylostella to the infection of I. fumosorosea at different time points by using RNA-Sequencing and differential gene expression technology at the genomic level. To gain insight into the host-pathogen interaction at the genomic level, five libraries of P. xylostella larvae at 12, 18, 24, and 36 h post-infection and a control were constructed. In total, 161 immunity-related genes were identified and grouped into four categories; immune recognition families, toll and Imd pathway, melanization, and antimicrobial peptides (AMPs). The results of differentially expressed immunity-related genes depicted that 15, 13, 53, and 14 up-regulated and 38, 51, 56, and 49 were down-regulated in P. xylostella at 12, 18, 24, and 36 h post-treatment, respectively. RNA-Seq results of immunity-related genes revealed that the expression of AMPs was reduced after treatment with I. fumosorosea. To validate RNA-Seq results by RT-qPCR, 22 immunity-related genes were randomly selected. In conclusion, our results demonstrate that I. fumosorosea has the potential to suppress the immune response of P. xylostella and can become a potential biopesticide for controlling P. xylostella.
Journal of Economic Entomology | 2018
Muhammad Farooq; Muhammad Shakeel; Ayesha Iftikhar; Muhammad Shahid; Xun Zhu
Insecticide resistance is a major challenge in successful insect pest control as the insects have the ability to develop resistance to various widely used insecticides. Butene-fipronil is a novel compound with high toxicity to insects and less toxicity to the non-target organisms. In the present study, the effect of butene-fipronil alone and in combination with three enzyme inhibitors, piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP), was carried out on larvae and adults of Drosophilia melanogaster. Our results indicated that the co-toxicity indices of butene-fipronil + PBO, butene-fipronil + TPP, and butene-fipronil + DEM mixtures were 437.3, 335.0, and 210.3, respectively, in the second-instar larvae, while 186.6, 256.2, and 238.5, respectively, in the adults, indicating synergistic effects. Interestingly, butene-fipronil increased the expression of CYP28A5 in the larvae; CYP9F2, CYP304A1, CYP28A5, and CYP318A1 in the female adults; and CYP303A1 and CYP28A5 in the male adults. Furthermore, high-level expression of Est-7 was observed in the female adults compared to larvae and male adults. Our results suggest that there is no difference in butene-fipronil metabolism in larvae and male and female adults of D. melanogaster.
Frontiers in Immunology | 2018
Muhammad Shakeel; Xiaoxia Xu; Jin Xu; Shuzhong Li; Jialin Yu; Xianqiang Zhou; Xiaojing Xu; Qiongbo Hu; Xiaoqiang Yu; Fengliang Jin
Life table and predation data were collected for Coccinella septempunctata (Linnaeus) (Coleoptera: Coccinellidae) feeding on three different host aphid species, Aphis craccivora (Koch) (Hemiptera: Aphididae), Lipaphis erysimi (Kaltenbach) (Hemiptera: Aphididae), and Myzus persicae (Sulzer) (Hemiptera: Aphididae), under laboratory conditions, using age-stage, two-sex life table. The preadult developmental period of C. septempunctata was the shortest on M. persicae (21.12 d) and the longest on A. craccivora (28.81 d). Net reproductive rate (R0) ranged from 77.31 offspring per individual on A. craccivora to 165.97 offspring per individual on M. persicae. Mean generation time (T) ranged from 39.10 d on M. persicae to 51.96 d on L. erysimi. Values of the intrinsic rate of increase (r) decreased in the order M. persicae, A. craccivora, and L. erysimi (0.1302, 0.0864 and 0.0848 d-1, respectively). The highest finite rate of increase (λ) was observed on M. persicae (1.1391 d-1) and the lowest was observed on A. craccivora and L. erysimi (1.0903 and 1.0885 d-1, respectively). This information will be useful in relation to the mass rearing of C. septempunctata in biological control systems.
Frontiers in Physiology | 2017
Jin Xu; Xiaoxia Xu; Shuzhong Li; Shuang Wang; Xiaojing Xu; Xianqiang Zhou; Jialin Yu; Xiaoqiang Yu; Muhammad Shakeel; Fengliang Jin
Plutella xylostella, a global key pest, is one of the major lepidopteran pests of cruciferous vegetables owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of the entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects and has been used as an alternative control strategy to reduce harmful effects of insecticides. However, microRNA (miRNA)-regulated reactions against destruxin A have not been elucidated yet. Therefore, here, to identify immunity-related miRNAs, we constructed four small RNA libraries from destruxin A-injected larvae of P. xylostella at three different time courses (2, 4, and 6 h) with a control, and sequenced by Illumina. Our results showed that totally 187 known and 44 novel miRNAs were identified in four libraries by bioinformatic analysis. Interestingly, among differentially expressed known miRNAs, some conserved miRNAs, such as miR-263, miR-279, miR-306, miR-2a, and miR-308, predicted to be involved in regulating immunity-related genes, were also identified. Worthy to mention, miR-306 and miR-279 were also listed as common abundantly expressed miRNA in all treatments. The Kyoto Encyclopedia of Genes and Genomes pathway analysis also indicated that differentially expressed miRNAs were involved in several immunity-related signaling pathways, including toll signaling pathway, IMD signaling pathway, JAK–STAT signaling pathway, and cell adhesion molecules signaling pathway. To the best of our knowledge, this is the first comprehensive report of destruxin A-responsive immunity-related miRNAs in P. xylostella. Our findings will improve in understanding the role of destruxin A-responsive miRNAs in the host immune system and would be useful to develop biological control strategies for controlling P. xylostella.
Philippine Journal of Crop Science | 2013
Abdul Khaliq; Muhammad Shakeel; Amar Matloob; Saddam Hussain; Asif Tanveer; Ghulam Murtaza
The development of resistance by Plutella xylostella to almost all insecticides is of significant concern all over the world. Entomopathogenic fungi such as Isaria fumosorosea have been used as an alternative to insecticides. However, the knowledge of miRNA-regulated reactions against entomopathogenic fungi is still in its infant stage. In the present study, P. xylostella was challenged with I. fumosorosea at four different time points (12, 18, 24, and 36 h) including a control, to build miRNA libraries by Illumina sequencing. The results of differential expression analysis exhibited that 23 miRNAs were differentially expressed, compared to control, in all treatments. It is worth mentioning, of these, some conserved miRNAs such as miR-2, miR-9a, miR-745, miR-7b, and miR-2767, known to play critical roles in host-pathogen interaction, were also identified. Furthermore, differentially expressed miRNAs were validated by RT-qPCR. Our results provide an essential information for further functional studies of the interaction between I. fumosorosea and P. xylostella at the post-transcriptional level.