Muhammad U. Ghani
University of Oklahoma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammad U. Ghani.
Optics Express | 2014
Zhongxing Zhou; Feng Gao; Huijuan Zhao; Lixin Zhang; Liqiang Ren; Zheng Li; Muhammad U. Ghani; Hong Liu
The modulation transfer function (MTF) of radiographic systems is frequently evaluated by the systems line spread function (LSF) using narrow slits. The conventional slit method requires LSF tail approximation, which is achieved by exponentially extrapolating the LSF tails beyond 1% of peak value. However, the estimated MTF at low frequencies from extrapolation may not reflect the true performance of the system. In this study, a monotone spline regression technique for LSF tail approximation is developed to improve the accuracy of MTF estimation at low frequencies. This technique is based on the underlying physical principles of the system response. The advantages of this technique are demonstrated with simulated examples of which the true MTFs are known. The application of this measurement technique is also demonstrated.
Journal of X-ray Science and Technology | 2015
Muhammad U. Ghani; Aimin Yan; Molly D. Wong; Yuhua Li; Liqiang Ren; Xizeng Wu; Hong Liu
The objective of this study was to investigate the optimization of a high energy in-line phase sensitive x-ray imaging prototype under different geometric and operating conditions for mammography application. A phase retrieval algorithm based on phase attenuation duality (PAD) was applied to the phase contrast images acquired by the prototype. Imaging performance was investigated at four magnification values of 1.67, 2, 2.5 and 3 using an acrylic edge, an American College of Radiology (ACR) mammography phantom and contrast detail (CD) phantom with tube potentials of 100, 120 and 140 kVp. The ACR and CD images were acquired at the same mean glandular dose (MGD) of 1.29 mGy with a computed radiography (CR) detector of 43.75 μm pixel pitch at a fixed source to image distance (SID) of 170 cm. The x-ray tube focal spot size was kept constant as 7 μm while a 2.5 mm thick aluminum (Al) filter was used for beam hardening. The performance of phase contrast and phase retrieved images were compared with computer simulations based on the relative phase contrast factor (RPF) at high x-ray energies. The imaging results showed that the x-ray tube operated at 100 kVp under the magnification of 2.5 exhibits superior imaging performance which is in accordance to the computer simulations. As compared to the phase contrast images, the phase retrieved images of the ACR and CD phantoms demonstrated improved imaging contrast and target discrimination. We compared the CD phantom images acquired in conventional contact mode with and without the anti-scatter grid using the same prototype at 1.295 mGy and 2.59 mGy using 40 kVp, a 25 μm rhodium (Rh) filter. At the same radiation dose, the phase sensitive images provided improved detection capabilities for both the large and small discs, while compared to the double dose image acquired in conventional mode, the observer study also indicated that the phase sensitive images provided improved detection capabilities for the large discs. This study therefore validates the potential of using high energy phase contrast x-ray imaging to improve lesion detection and reduce radiation dose for clinical applications such as mammography.
Optics Express | 2014
Liqiang Ren; Zhongxing Zhou; Muhammad U. Ghani; Yuhua Li; Hong Liu
A method for determining the modulation transfer function (MTF) in direct X-ray fluorescence mapping (XFM) system is reported. With a standard container filled with homogeneous gold nanoparticle (GNP) solution (1% by weight), sharp edges are made and utilized to acquire the data for edge spread function (ESF). Through necessary data processing such as signal extraction, attenuation correction and curve fitting and proper calculations of differentiating and Fourier transform, MTF can be determined. Influencing factors of MTF determination in XFM system are thoroughly discussed in theory and validated by experiments. The results show that different mapping steps do not noticeably affect the measured MTF, while MTF is greatly degraded as the collimator-to-object distance increases. The theoretical analyses and experimental validations of the MTF determination are useful and helpful for imaging performance evaluation, system design and optimal operations. The presented methodology could be applied in other XRF based systems with modified imaging trajectories.
Physics in Medicine and Biology | 2017
Muhammad U. Ghani; Molly D. Wong; Di Wu; Bin Zheng; Laurie L. Fajardo; Aimin Yan; Janis Fuh; Xizeng Wu; Hong Liu
The objective of this study was to demonstrate the potential benefits of using high energy x-rays in comparison with the conventional mammography imaging systems for phase sensitive imaging of breast tissues with varying glandular-adipose ratios. This study employed two modular phantoms simulating the glandular (G) and adipose (A) breast tissue composition in 50 G-50 A and 70 G-30 A percentage densities. Each phantom had a thickness of 5 cm with a contrast detail test pattern embedded in the middle. For both phantoms, the phase contrast images were acquired using a micro-focus x-ray source operated at 120 kVp and 4.5 mAs, with a magnification factor (M) of 2.5 and a detector with a 50 µm pixel pitch. The mean glandular dose delivered to the 50 G-50 A and 70 G-30 A phantom sets were 1.33 and 1.3 mGy, respectively. A phase retrieval algorithm based on the phase attenuation duality that required only a single phase contrast image was applied. Conventional low energy mammography images were acquired using GE Senographe DS and Hologic Selenia systems utilizing their automatic exposure control (AEC) settings. In addition, the automatic contrast mode (CNT) was also used for the acquisition with the GE system. The AEC mode applied higher dose settings for the 70 G-30 A phantom set. As compared to the phase contrast images, the dose levels for the AEC mode acquired images were similar while the dose levels for the CNT mode were almost double. The observer study, contrast-to-noise ratio and figure of merit comparisons indicated a large improvement with the phase retrieved images in comparison to the AEC mode images acquired with the clinical systems for both density levels. As the glandular composition increased, the detectability of smaller discs decreased with the clinical systems, particularly with the GE system, even at higher dose settings. As compared to the CNT mode (double dose) images, the observer study also indicated that the phase retrieved images provided similar or improved detection for all disc sizes except for the disk diameters of 2 mm and 1 mm for the 50 G-50 A phantom and 3 mm and 0.5 mm for the 70 G-30 A phantom. This study demonstrated the potential of utilizing a high energy phase sensitive x-ray imaging system to improve lesion detection and reduce radiation dose when imaging breast tissues with varying glandular compositions.
Journal of X-ray Science and Technology | 2015
Zhongxing Zhou; Feng Gao; Huijuan Zhao; Lixin Zhang; Liqiang Ren; Zheng Li; Muhammad U. Ghani; Ting Hao; Hong Liu
The modulation transfer function (MTF) of a radiographic system is often evaluated by measuring the systems edge spread function (ESF) using edge device. However, the numerical differentiation procedure of the traditional slanted edge method amplifies noises in the line spread function (LSF) and limits the accuracy of the MTF measurement at low frequencies. The purpose of this study is to improve the accuracy of low-frequency MTF measurement for digital x-ray imaging systems. An edge spread function (ESF) deconvolution technique was developed for MTF measurement based on the degradation model of slanted edge images. Specifically, symmetric oversampled ESFs were constructed by subtracting a shifted version of the ESF from the original one. For validation, the proposed MTF technique was compared with conventional slanted edge method through computer simulations as well as experiments on two digital radiography systems. The simulation results show that the average errors of the proposed ESF deconvolution technique were 0.11% ± 0.09% and 0.23% ± 0.14%, and they outperformed the conventional edge method (0.64% ± 0.57% and 1.04% ± 0.82% respectively) at low-frequencies. On the experimental edge images, the proposed technique achieved better uncertainty performance than the conventional method. As a result, both computer simulation and experiments have demonstrated that the accuracy of MTF measurement at low frequencies can be improved by using the proposed ESF deconvolution technique.
Proceedings of SPIE | 2013
Di Wu; Muhammad U. Ghani; Hui Miao; Yuhua Li; Wei R. Chen; Xizeng Wu; Hong Liu
This research is aimed at studying the advantages of an x-ray phase-contrast tomosynthesis prototype by using phantoms. A prototype system is assembled with a micro-focus x-ray source, a rotating stage and a computed radiography detector mounted on an optical rail. A custom designed bubble wrap phantom is used in experiments. Angular projection images are acquired from -20° to +20° with 2° interval. The in-plane slices are reconstructed. The feature area on the phantom is observed. The prototype system provides an intrinsic way to investigate the potential and imaging quality of a phase-contrast tomosynthesis imaging method. As the result, phase-contrast tomosynthesis imaging method is demonstrated for its advantages in avoiding structure noise and overlapping issues by comparing the results acquired by computed radiography and phase-contrast radiography.
Proceedings of SPIE | 2013
Muhammad U. Ghani; Di Wu; Yuhua Li; Minhua Kang; Wei R. Chen; Xizeng Wu; Hong Liu
The purpose of this study was to determine the Contrast to Noise Ratio (CNR) of the x-ray images taken with the phase contrast imaging mode and compare them with the CNR of the images taken under the conventional mode. For each mode, three images were taken under three exposure conditions of 100 kVp (2.8mAs), 120 kVp (1.9mAs) and 140kVp (1.42mAs). A 1.61cm thick contrast detail phantom was used as an imaging object. For phase contrast, the source to image detector distance (SID) was 182.88 cm and the source to object (SOD) distance was 73.15 cm. The SOD was the same as SID in the conventional imaging mode. A computed radiography (CR) plate was used as a detector and the output CR images were converted to linear form in relation with the incident x-ray exposure. To calculate CNR, an image processing software was used to determine the mean pixel value and the standard deviation of the pixels in the region of interest (ROI) and in the nearby background around ROI. At any given exposure condition investigated in this study, the CNR values for the phase contrast images were better as compared to the corresponding conventional mode images. The superior image quality in terms of CNR is contributed by the phase-shifts resulted contrast, as well as the reduced scatters due to the air gap between the object and the detector.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2017
Muhammad U. Ghani; Molly D. Wong; Liqiang Ren; Di Wu; Bin Zheng; J Rong; Xizeng Wu; Hong Liu
The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16-50 μm as the source output power changes from 10-39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (μA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 μm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 μm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications.
Journal of Computer Assisted Tomography | 2017
Muhammad U. Ghani; Liqiang Ren; Molly D. Wong; Yuhua Li; Bin Zheng; Xiujiang John Rong; Kai Yang; Hong Liu
Objective The aim of this study was to investigate the noise power properties of a micro–computed tomography (micro-CT) system under different operating conditions. Methods A commercial micro-CT was used in the study that used a flat panel detector with a 127-&mgr;m–pixel pitch and a micro-focus x-ray tube. Conical tubes of various diameters were used under different acquisition conditions. Multidimensional noise power spectrums were used as a metric to investigate the noise properties of the system. Noise power spectrum was calculated from the difference data generated by subtraction of 2 identical scans. The noise properties with respect to various parameters that include the impact of number of projections, x-ray spectra, milliampere-second, slice location, object diameter, voxel size, geometric magnification (M), back-projection filters, and reconstruction magnification (Mrecon) were studied. Results At a same isocentric exposure rate of 270 mR/s, the noise power was much lower for the image reconstructed with 3672 views (122 seconds) as compared with the 511 views (17 seconds), whereas at a fixed isocentric exposure of 4600 mR, the noise power levels were almost similar. Image noise with a 50-kV beam was higher as compared with the 90-kV beam at a same isocentric exposure. Image noise from a 16-mm–diameter conical tube was much lower as compared with the 28- and 56-mm tubes under identical isocentric exposures. The choice of back-projection filter influences noise power spectrum curves in terms of width and amplitudes. Reconstruction magnification applied during the reconstruction process increased the noise power at lower spatial frequencies but reduced the noise power at higher spatial frequencies. It can be established that, for small details corresponding to high spatial frequencies, reconstruction magnification can provide an improved signal-to-noise ratio. At all spatial frequencies, the in-plane images had lower noise power levels as compared with the z-plane images. Conclusions The noise power properties investigated in this study provide important image quality references for refined cone beam system development, optimization, and operations.
Proceedings of SPIE | 2016
Muhammad U. Ghani; Liqiang Ren; Kai Yang; Wei R. Chen; Xizeng Wu; Hong Liu
The objective of this study was to characterize the operating parameters of an in-vivo micro CT system. In-plane spatial resolution, noise, geometric accuracy, CT number uniformity and linearity, and phase effects were evaluated using various phantoms. The system employs a flat panel detector with a 127 μm pixel pitch, and a micro focus x-ray tube with a focal spot size ranging from 5-30 μm. The system accommodates three magnification sets of 1.72, 2.54 and 5.10. The in-plane cutoff frequencies (10% MTF) ranged from 2.31 lp/mm (60 mm FOV, M=1.72, 2×2 binning) to 13 lp/mm (10 mm FOV, M=5.10, 1×1 binning). The results were qualitatively validated by a resolution bar pattern phantom and the smallest visible lines were in 30-40 μm range. Noise power spectrum (NPS) curves revealed that the noise peaks exponentially increased as the geometric magnification (M) increased. True in-plane pixel spacing and slice thickness were within 2% of the system’s specifications. The CT numbers in cone beam modality are greatly affected by scattering and thus they do not remain the same in the three magnifications. A high linear relationship (R2 > 0.999) was found between the measured CT numbers and Hydroxyapatite (HA) loadings of the rods of a water filled mouse phantom. Projection images of a laser cut acrylic edge acquired at a small focal spot size of 5 μm with 1.5 fps revealed that noticeable phase effects occur at M=5.10 in the form of overshooting at the boundary of air and acrylic. In order to make the CT numbers consistent across all the scan settings, scatter correction methods may be a valuable improvement for this system.