Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhammad U. Ghori is active.

Publication


Featured researches published by Muhammad U. Ghori.


Colloids and Surfaces B: Biointerfaces | 2013

The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices--the use of the USP III apparatus.

Kofi Asare-Addo; Waseem Kaialy; Marina Levina; Ali R. Rajabi-Siahboomi; Muhammad U. Ghori; Enes Šupuk; Peter R. Laity; Barbara R. Conway; Ali Nokhodchi

Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC) E4M and K4M were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The objectives of this study were to evaluate the effects of systematic agitation, ionic strength and pH on the release of theophylline from the gel forming hydrophilic polymeric matrices with different methoxyl substitution levels. Tribo-electric charging of hypromellose, theophylline and their formulated blends containing E4M and K4M grades has been characterised, along with quantitative observations of flow, compression behaviour and particle morphology. Agitations were studied at 5, 10, 15, 20, 25, 30 dips per minute (dpm) and also in the ascending and descending order in the dissolution vials. The ionic concentration strength of the media was also varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. To study the effect of ionic strength on the hydrophilic matrices, agitation was set at 20 dpm. The charge results on individual components imply that the positively charged particles have coupled with the negatively charged particles to form a stable ordered mixture which is believed to result in a more homogeneous and stable system. The particle shape analysis showed the HPMC K4M polymer to have a more irregular morphology and a rougher surface texture in comparison to the HPMC E4M polymer, possibly a contributory factor to the gelation process. The results showed gelation occurred quicker for the K4M tablet matrices. Drug release increased with increased agitation. This was more pronounced for the E4M tablet matrices. The ionic strength also had more of an effect on the drug release from the E4M matrices. The experiments highlighted the resilience of the K4M matrices in comparison with the E4M matrices. The results thus show that despite similar viscosities of E4M and K4M, the methoxyl substitution makes a difference to their control of drug release and as such care and consideration should be given to the choice of polymer used for extended release. The use of systematic change of agitation method and ionic strength may indicate potential fed and fasted effects on drug release from hydrophilic matrices.


International Journal of Pharmaceutics | 2014

Simultaneous quantification of drug release and erosion from hypromellose hydrophilic matrices.

Muhammad U. Ghori; Gidion Ginting; Alan M. Smith; Barbara R. Conway

Hypromellose, HPMC, is frequently used to control drug release from matrix tablet formulations. Drug is released by a combination of diffusion through and erosion of, the matrix and is usually measured invitro by separate dissolution and swelling/erosion studies. The present study was designed to measure matrix erosion, polymer dissolution and drug release kinetics and their inter-relationship in a single experiment using a phenol-sulphuric acid assay to quantify dissolved HPMC alongside spectrophotometrical analysis of drug release. HPMC-based matrix tablets were manufactured containing two drugs at various drug:HPMC ratios. Drug release was determined and the degree of erosion was calculated by gravimetry. Results showed the matrix erosion rate and drug release were dependent on HPMC content and drug solubility, as expected. It was also apparent that the erosion rate was directly related to the drug release kinetics and comparative analysis of both matrix erosion techniques showed a high level of correlation. The findings show that a simple and inexpensive assay can be utilised not only to quantify HPMC but can also be used to calculate the degree of erosion of tablet matrices, negating the need for a separate study and providing a simplified practical approach that may be of use during product optimization.


European Journal of Pharmaceutical Sciences | 2014

Tribo-electric charging and adhesion of cellulose ethers and their mixtures with flurbiprofen

Muhammad U. Ghori; Enes Šupuk; Barbara R. Conway

The pervasiveness of tribo-electric charge during pharmaceutical processing can lead to the exacerbation of a range of problems including segregation, content heterogeneity and particle surface adhesion. The excipients, hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC), are often used in drug delivery systems and so it is important to understand the impact of associated factors on their charging and adhesion mechanisms, however, little work has been reported in this area. Such phenomena become more prominent when excipients are introduced to a powder mixture alongside the active pharmaceutical ingredient(s) (APIs) with inter- and intra-particulate interactions giving rise to electrification and surface adhesion of powder particles. The aim of this study was to understand the impact of material attributes (particle size, hydroxypropyl (Hpo) to methoxyl (Meo) ratio and molecular size) on the charging and adhesion characteristics of cellulose ethers. Furthermore, a poorly compactible and highly electrostatically charged drug, flurbiprofen, was used to develop binary powder mixtures having different polymer to drug ratios and the relationship between tribo-electric charging and surface adhesion was studied. Charge was induced on powder particles and measured using a custom built device based on a shaking concept, consisting of a Faraday cup connected to an electrometer. The diversity in physicochemical properties has shown a significant impact on the tribo-electric charging and adhesion behaviour of MC and HPMC. Moreover, the adhesion and electrostatic charge of the API was significantly reduced when MC and HPMC were incorporated and tribo-electric charging showed a linear relationship (R(2)=0.81-0.98) with particle surface adhesion, however, other factors were also involved. It is anticipated that such a reduction in charge and particle surface adhesion would improve flow and compaction properties during processing.


International Journal of Pharmaceutics | 2015

Starch-free grewia gum matrices: Compaction, swelling, erosion and drug release behaviour

Elijah I. Nep; Kofi Asare-Addo; Muhammad U. Ghori; Barbara R. Conway; Alan M. Smith

Polysaccharides are suitable for application as hydrophilic matrices because of their ability to hydrate and swell upon contact with fluids, forming a gel layer which controls drug release. When extracted from plants, polysaccharides often contain significant quantities of starch that impacts upon their functional properties. This study aimed to evaluate differences in swelling, erosion and drug release from matrix tablets prepared from grewia gum (GG) and starch-free grewia gum (GDS) extracted from the stems of Grewia mollis. HPMC was used as a control polymer with theophylline as a model drug. Swelling, erosion, and in-vitro release were performed in deionized water, pH 1.2 and pH 6.8 media. The Vergnaud and Krosmeyer-Peppas model were used for swelling and drug release kinetics, respectively. However, linear regression technique was used to determine the erosion rate. GDS compacts were significantly harder than the native GG and HPMC compacts. GDS matrices exhibited the fastest erosion and drug release in deionised water and phosphate buffer compared with the GG and HPMC. At pH 1.2, GDS exhibited greater swelling than erosion, and drug release was similar to GG and HPMC. This highlights the potential of GDS as a matrix for controlled release similar to HPMC and GG at pH 1.2 but with a more rapid release at pH 6.8. GDS may have wider application in reinforcing compacts with relatively low mechanical strength.


European Journal of Pharmaceutics and Biopharmaceutics | 2016

Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process

Shashi Ravi Suman Rudrangi; Waseem Kaialy; Muhammad U. Ghori; Vivek Trivedi; Martin J. Snowden; Bruce D. Alexander

The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state.


Materials | 2015

Tribo-electrification and Powder Adhesion Studies in the Development of Polymeric Hydrophilic Drug Matrices

Muhammad U. Ghori; Enes Šupuk; Barbara R. Conway

The generation of tribo-electric charge during pharmaceutical powder processing can cause a range of complications, including segregation of components leading to content uniformity and particle surface adhesion. This phenomenon becomes problematical when excipients are introduced to a powder mixture alongside the highly charging active pharmaceutical ingredient(s) (APIs). The aim of this study was to investigate the tribo-electric charging and adhesion properties of a model drug, theophylline. Moreover, binary powder mixtures of theophylline with methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC), having different polymer to drug ratios, were formed in order to study the impact of polymer concentration, particle size, substitution ratio and molecular size on the tribo-electric charging and surface adhesion properties of the drug. Furthermore, the relationship between tribo-electric charging and surface adhesion was also studied. The diversity in physicochemical properties of MC/HPMC has shown a significant impact on the tribo-electric charging and adhesion behaviour of theophylline. It was found that the magnitude of electrostatic charge and the level of surface adhesion of the API were significantly reduced with an increase in MC and HPMC concentration, substitution ratios and molecular size. In addition, the tribo-electric charge showed a linear relationship with particle surface adhesion, but the involvement of other forces cannot be neglected.


International Journal of Biological Macromolecules | 2017

Influence of polymer ratio and surfactants on controlled drug release from cellulosic microsponges

Yasser Shahzad; Sidra Saeed; Muhammad U. Ghori; Tariq Mahmood; Abid Mehmood Yousaf; Muhammad Jamshaid; Rizwan Sheikh; Syed A. A. Rizvi

Microsponge refers to a highly cross-linked particle system with a capacity to adsorb (like a dry sponge) pharmaceutical materials. There are various methods available to prepare microsponge formulations, in this study we used quasi emulsion-solvent diffusion method with a combination of hydrophobic (ethyl cellulose) and hydrophilic (hydroxypropyl methylcellulose) polymers mediated via Tween 80 and polyvinyl alcohol. Various ratios and amounts of the polymers and surfactants were used to prepare microsponge formulations using ketoprofen as a model drug and extensively characterised. Our results, for the first time, indicate successful and optimised formulation with desired pharmaceutical characteristics using a combination of hydrophobic and hydrophilic polymers.


International Journal of Biological Macromolecules | 2017

Structural and rheological studies of a polysaccharide mucilage from lacebark leaves (Hoheria populnea A. Cunn.)

Ian M. Sims; Alan M. Smith; Gordon A. Morris; Muhammad U. Ghori; Susan M. Carnachan

A water-soluble mucilage extracted from the leaves of Hoheria populnea was chemically and physically studied. Monosaccharide composition and linkages were determined by high performance anion exchange chromatography (HPAEC), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Lacebark mucilage was composed of rhamnose, galactose, galacturonic acid and glucuronic acid (2:1:2:1). Proton and 13C NMR spectroscopy, and linkage analysis, revealed a predominantly rhamnogalacturonan I-type (RG I-type) structure comprising of a backbone of →4]-α-D-GalpA-[1→2]-α-L-Rhap-[1→. Data indicated the mucilage likely comprises of a polymer containing several structurally discrete domains or possibly more than one discrete polymer. One domain contains a RG I-type backbone with branching at O-3 of GalpA residues to terminal β-D-GlcpA residues, another similarly contains a RG I-type backbone but is branched at O-4 of the Rhap residues to terminal GalpA residues or oligosaccharides containing α-linked 4-Galp and terminal GalpA residues. A possible third domain contains contiguous 2-Rhap residues, some branched at O-3. Hydrated mucilage exhibited pseudoplastic flow behaviour and viscoelastic properties of an entangled biopolymer network. These rheological behaviours were only slightly affected by pH and may prove advantageous in potential end-product applications including oral pharmaceuticals or as a food ingredient.


Pharmaceutical Development and Technology | 2018

Evaluating the swelling, erosion, and compaction properties of cellulose ethers

Muhammad U. Ghori; Liam M. Grover; Kofi Asare-Addo; Alan M. Smith; Barbara R. Conway

Abstract Swelling, erosion, deformation, and consolidation properties can affect the performance of cellulose ethers, the most commonly used matrix former in hydrophilic sustained tablet formulations. The present study was designed to comparatively evaluate the swelling, erosion, compression, compaction, and relaxation properties of the cellulose ethers in a comprehensive study using standardised conditions. The interrelationship between various compressional models and the inherent deformation and consolidation properties of the polymers on the derived swelling and erosion parameters are consolidated. The impact of swelling (Kw) on erosion rates (KE) and the inter-relationship between Heckel and Kawakita plasticity constants was also investigated. It is evident from the findings that the increases in both substitution and polymer chain length led to higher Kw, but a lower KE; this was also true for all particle size fractions regardless of polymer grade. Smaller particle size and high substitution levels tend to increase the relative density of the matrix but reduce porosity, yield pressure (Py), Kawakita plasticity parameter (b−1) and elastic relaxation. Both KW versus KE (R2 = 0.949–0.980) and Py versus. b−1 correlations (R2 = 0.820–0.934) were reasonably linear with regards to increasing hydroxypropyl substitution and molecular size. Hence, it can be concluded that the combined knowledge of swelling and erosion kinetics in tandem with the in- and out-of-die compression findings can be used to select a specific polymer grade and further to develop and optimize formulations for oral controlled drug delivery applications.


International Journal of Pharmaceutics | 2018

The effect of mesoporous silica impregnation on tribo-electrification characteristics of flurbiprofen

Mohammad Suhail Afzal; Faiza Zanin; Muhammad U. Ghori; Marta Granollers; Enes Šupuk

Graphical abstract Figure. No Caption available. Abstract Tribo‐electrification is a common occurrence within the pharmaceutical industry where solid dosage forms constitute majority of pharmaceutical formulations. Tribo‐electrification of powders leads to a range of complications such as adhesion of particulate material to the processing equipment resulting in segregation, affecting the content uniformity. Flurbiprofen, a highly charging material, was used as a model drug to investigate the tribo‐electrification and adhesion characteristics by impregnating the model drug inside a mesoporous silica matrix. The model drug was impregnated using i) solvent loading, and ii) physical mixing methods, at varying degree of silica to drug ratio (5–20% w/w). The resulting mixtures were tribo‐charged using a custom built device based on a shaking concept inside a stainless steel capsule, consisting of a Faraday cup and connected to electrometer. The electrostatic charge and the percentage adhesion of Flurbiprofen were reduced in both drug loading methods. The solvent impregnation method using acetone was more successful at reducing the electrostatic charge build up on flurbiprofen than physical powder mixing. The percentage adhesion to the shaking capsule was reduced notably as a result of loading the drug in the SBA‐15 porous network. The results illustrate that the incorporation of highly charged model drug inside a low‐charging pharmaceutical carrier system to be an effective approach in control the induction of tribo‐electrification phenomena during powder processing.

Collaboration


Dive into the Muhammad U. Ghori's collaboration.

Top Co-Authors

Avatar

Barbara R. Conway

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Alan M. Smith

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Enes Šupuk

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Kofi Asare-Addo

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Gordon A. Morris

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar

Leigh Fleming

University of Huddersfield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Waseem Kaialy

University of Wolverhampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge