Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhammad Zeeshan Shakir is active.

Publication


Featured researches published by Muhammad Zeeshan Shakir.


IEEE Wireless Communications | 2015

MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network

Zhen Gao; Linglong Dai; De Mi; Zhaocheng Wang; Muhammad Imran; Muhammad Zeeshan Shakir

The ultra-dense network (UDN) has been considered as a promising candidate for future 5G networks to meet the explosive data demand. To realize UDN, a reliable, gigahertz bandwidth, and cost-effective backhaul connecting ultradense small-cell BSs and macrocell BS are prerequisite. Millimeter-wave can provide the potential gigabit-per-second traffic for wireless backhaul. Moreover, mmWave can easily be integrated with massive MIMO for improved link reliability. In this article, we discuss the feasibility of mmWave massive-MIMO-based wireless backhaul for 5G UDN, and the benefits and challenges are also addressed. In particular, we propose a digitally controlled phase shifter network (DPSN)-based hybrid precoding/combining scheme for mmWave massive MIMO, whereby the low-rank property of the mmWave massive MIMO channel matrix is leveraged to reduce the required cost and complexity of a transceiver with a negligible performance loss. One key feature of the proposed scheme is that the macrocell BS can simultaneously support multiple small-cell BSs with multiple streams for each small-cell BS, which is essentially different from conventional hybrid precoding/combining schemes, typically limited to single-user MIMO with multiple streams or multi-user MIMO with single stream for each user. Based on the proposed scheme, we further explore the fundamental issues of developing mmWave massive MIMO for wireless backhaul, and the associated challenges, insight, and prospects to enable mmWave massive-MIMO-based wireless backhaul for 5G UDN are discussed.


IEEE Communications Magazine | 2013

Green heterogeneous small-cell networks: toward reducing the CO 2 emissions of mobile communications industry using uplink power adaptation

Muhammad Zeeshan Shakir; Khalid A. Qaraqe; Hina Tabassum; Mohamed-Slim Alouini; Erchin Serpedin; Muhammad Imran

Heterogeneous small cell networks, or Het- SNets, are considered as a standard part of future mobile networks in which multiple lowpower low-cost user deployed base stations complement the existing macrocell infrastructure. This article proposes an energy-efficient deployment of the cells where the small cell base stations are arranged around the edge of the reference macrocell, and the deployment is referred to as cell-on-edge (COE) deployment. The proposed deployment ensures an increase in the network spectral and energy efficiency by facilitating cell edge mobile users with small cells. Moreover, COE deployment guarantees reduction of the carbon footprint of mobile operations by employing adaptive uplink power control. In order to calibrate the reduction in CO2 emissions, this article quantifies the ecological and associated economical impacts of energy savings in the proposed deployment. Simulation results quantify the improvements in CO2 emissions and spectral and energy gains of the proposed COE deployment compared to macro-only networks and typical small cell deployment strategies where small cells are randomly deployed within a given macrocell.


ieee global conference on signal and information processing | 2014

A survey on energy trading in smart grid

I. Safak Bayram; Muhammad Zeeshan Shakir; Mohamed M. Abdallah; Khalid A. Qaraqe

As the distributed energy generation and storage technologies are becoming economically viable, energy trading is gradually becoming a profit making option for end-users. This trend is further supported by the regulators and the policy makers as it aids the efficiency of power grid operations, reduces power generation cost and the Green House Gas (GHG) emissions. To that end, in this paper we provide an overview of distributed energy trading concepts in smart grid. First, we identify the motivation and the desired outcomes of energy trading framework. Then we present the enabling technologies that are required to generate, store, and communicate with the trading agencies. Finally, we survey on the existing literature and present an array of mathematical frameworks employed.


IEEE Communications Magazine | 2014

Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

Yusuf A. Sambo; Muhammad Zeeshan Shakir; Khalid A. Qaraqe; Erchin Serpedin; Muhammad Imran

Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femto-cells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of small-cells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-one-dge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-on-edge configuration to establish a greener network over the other competitive configurations.


international conference on communications | 2012

On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

Muhammad Zeeshan Shakir; Mohamed-Slim Alouini

Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users.


Iet Communications | 2012

Throughput analysis for cognitive radio networks with multiple primary users and imperfect spectrum sensing

Wuchen Tang; Muhammad Zeeshan Shakir; Muhammad Imran; Rahim Tafazolli; Mohamed-Slim Alouini

In cognitive radio networks, the licensed frequency bands of the primary users (PUs) are available to the secondary user (SU) provided that they do not cause significant interference to the PUs. In this study, the authors analysed the normalised throughput of the SU with multiple PUs coexisting under any frequency division multiple access communication protocol. The authors consider a cognitive radio transmission where the frame structure consists of sensing and data transmission slots. In order to achieve the maximum normalised throughput of the SU and control the interference level to the legal PUs, the optimal frame length of the SU is found via simulation. In this context, a new analytical formula has been expressed for the achievable normalised throughput of SU with multiple PUs under prefect and imperfect spectrum sensing scenarios. Moreover, the impact of imperfect sensing, variable frame length of SU and the variable PU traffic loads, on the normalised throughput has been critically investigated. It has been shown that the analytical and simulation results are in perfect agreement. The authors analytical results are much useful to determine how to select the frame duration length subject to the parameters of cognitive radio network, such as network traffic load, achievable sensing accuracy and number of coexisting PUs.


IEEE Transactions on Communications | 2013

Generalized Mean Detector for Collaborative Spectrum Sensing

Muhammad Zeeshan Shakir; Anlei Rao; Mohamed-Slim Alouini

In this paper, a unified generalized eigenvalue based spectrum sensing framework referred to as Generalized mean detector (GMD) has been introduced. The generalization of the detectors namely (i) the eigenvalue ratio detector (ERD) involving the ratio of the largest and the smallest eigenvalues; (ii) the Geometric mean detector (GEMD) involving the ratio of the largest eigenvalue and the geometric mean of the eigenvalues and (iii) the Arithmetic mean detector (ARMD) involving the ratio of the largest and the arithmetic mean of the eigenvalues is explored. The foundation of the proposed unified framework is based on the calculation of exact analytical moments of the random variables of test statistics of the respective detectors. In this context, we approximate the probability density function (PDF) of the test statistics of the respective detectors by Gaussian/Gamma PDF using the moment matching method. Finally, we derive closed-form expressions to calculate the decision threshold of the eigenvalue based detectors by exchanging the derived exact moments of the random variables of test statistics with the moments of the Gaussian/Gamma distribution function. The performance of the eigenvalue based detectors is compared with the traditional detectors such as energy detector (ED) and cyclostationary detector (CSD) and validate the importance of the eigenvalue based detectors particularly over realistic wireless cognitive environments. Analytical and simulation results show that the GEMD and the ARMD yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed simple and tractable approximation approaches are in perfect agreement with the empirical results.


international conference on communications | 2017

Backhaul-aware robust 3D drone placement in 5G+ wireless networks

Elham Kalantari; Muhammad Zeeshan Shakir; Halim Yanikomeroglu; Abbas Yongacoglu

Using drones as flying base stations is a promising approach to enhance the network coverage and area capacity by moving supply towards demand when required. However deployment of such base stations can face some restrictions that need to be considered. One of the limitations in drone base stations (drone-BSs) deployment is the availability of reliable wireless backhaul link. This paper investigates how different types of wireless backhaul offering various data rates would affect the number of served users. Two approaches, namely, network-centric and user-centric, are introduced and the optimal 3D backhaul-aware placement of a drone-BS is found for each approach. To this end, the total number of served users and sum-rates are maximized in the network-centric and user-centric frameworks, respectively. Moreover, as it is preferred to decrease drone-BS movements to save more on battery and increase flight time and to reduce the channel variations, the robustness of the network is examined as how sensitive it is with respect to the users displacements.


IEEE Transactions on Vehicular Technology | 2014

Analytical Bounds on the Area Spectral Efficiency of Uplink Heterogeneous Networks Over Generalized Fading Channels

Muhammad Zeeshan Shakir; Hina Tabassum; Mohamed-Slim Alouini

Heterogeneous networks (HetNets) are envisioned to enable next-generation cellular networks by providing higher spectral and energy efficiency. A HetNet is typically composed of multiple radio access technologies where several low-power low-cost operators or user-deployed small-cell base stations (SBSs) complement the macrocell network. In this paper, we consider a two-tier HetNet where the SBSs are arranged around the edge of the reference macrocell such that the resultant configuration is referred to as cell-on-edge (COE). Each mobile user in a small cell is considered capable of adapting its uplink transmit power according to a location-based slow power control mechanism. The COE configuration is observed to increase the uplink area spectral efficiency (ASE) and energy efficiency while reducing the cochannel interference power. A moment-generating-function (MGF)-based approach has been exploited to derive the analytical bounds on the uplink ASE of the COE configuration. The derived expressions are generalized for any composite fading distribution, and closed-form expressions are presented for the generalized-K fading channels. Simulation results are included to support the analysis and to show the efficacy of the COE configuration. A comparative performance analysis is also provided to demonstrate the improvements in the performance of cell-edge users of the COE configuration compared with that of macro-only networks (MoNets) and other unplanned deployment strategies.


IEEE Communications Letters | 2015

Coverage Gain and Device-to-Device User Density: Stochastic Geometry Modeling and Analysis

Hafiz Atta Ul Mustafa; Muhammad Zeeshan Shakir; Muhammad Imran; Ali Imran; Rahim Tafazolli

Device-to-device (D2D) communication has huge potential for capacity and coverage enhancements for next generation cellular networks. The number of potential nodes for D2D communication is an important parameter that directly impacts the system capacity. In this letter, we derive an analytic expression for average coverage probability of cellular user and corresponding number of potential D2D users. In this context, mature framework of stochastic geometry and Poisson point process have been used. The retention probability has been incorporated in Laplace functional to capture reduced path-loss and shortest distance criterion based D2D pairing. The numerical results show a close match between analytic expression and simulation setup.

Collaboration


Dive into the Muhammad Zeeshan Shakir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed-Slim Alouini

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Athanasios V. Vasilakos

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge