Muhammed Zeyd Coban
Qualcomm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muhammed Zeyd Coban.
IEEE Transactions on Circuits and Systems for Video Technology | 2010
Marta Karczewicz; Peisong Chen; Rajan Laxman Joshi; Xianglin Wang; Wei-Jung Chien; Rahul P. Panchal; Yuriy Reznik; Muhammed Zeyd Coban; In Suk Chong
This paper describes a video coding technology proposal submitted by Qualcomm in response to a joint call for proposals (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. The proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64 × 64), single pass switched interpolation filters with offsets, mode-dependent directional transforms for intra-coding, luma and chroma high precision filtering, geometric motion partitions, adaptive motion vector resolution and efficient 16-point transforms. It also incorporates internal bit-depth increase and modified quadtree-based adaptive loop filtering. Simulation results are presented to demonstrate the high compression efficiency achieved by the proposed video codec at the expense of moderate increase in encoding and decoding complexity compared to the advanced video coding standard (AVC/H.264). For the random access and low delay configurations, it achieved average bit rate reductions of 30.9% and 33.0% for equivalent peak signal-to-noise ratio, respectively, compared to the corresponding AVC anchors. The proposed codec scored highly in both subjective evaluations and objective metrics and was among the best-performing CfP proposals.
Proceedings of SPIE | 2011
Marta Karczewicz; Peisong Chen; Rajan Laxman Joshi; Xianglin Wang; Wei-Jung Chien; Rahul P. Panchal; Muhammed Zeyd Coban; In Suk Chong; Yuriy Reznik
This paper describes video coding technology proposal submitted by Qualcomm Inc. in response to a joint call for proposal (CfP) issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG) in January 2010. Proposed video codec follows a hybrid coding approach based on temporal prediction, followed by transform, quantization, and entropy coding of the residual. Some of its key features are extended block sizes (up to 64x64), recursive integer transforms, single pass switched interpolation filters with offsets (single pass SIFO), mode dependent directional transform (MDDT) for intra-coding, luma and chroma high precision filtering, geometry motion partitioning, adaptive motion vector resolution. It also incorporates internal bit-depth increase (IBDI), and modified quadtree based adaptive loop filtering (QALF). Simulation results are presented for a variety of bit rates, resolutions and coding configurations to demonstrate the high compression efficiency achieved by the proposed video codec at moderate level of encoding and decoding complexity. For random access hierarchical B configuration (HierB), the proposed video codec achieves an average BD-rate reduction of 30.88c/o compared to the H.264/AVC alpha anchor. For low delay hierarchical P (HierP) configuration, the proposed video codec achieves an average BD-rate reduction of 32.96c/o and 48.57c/o, compared to the H.264/AVC beta and gamma anchors, respectively.
Archive | 2011
Marta Karczewicz; Muhammed Zeyd Coban; Peisong Chen; Hsiao-Chiang Chuang; Rajan Laxman Joshi
Archive | 2012
Wei-Jung Chien; Peisong Chen; Muhammed Zeyd Coban; Marta Karczewicz
Archive | 2012
Ye-Kui Wang; Ying Chen; Muhammed Zeyd Coban; Marta Karczewicz
Archive | 2011
Joel Sole Rojals; Muhammed Zeyd Coban; Yunfei Zheng; Rajan Laxman Joshi; Marta Karczewicz
Archive | 2011
Xianglin Wang; Rajan Laxman Joshi; Muhammed Zeyd Coban; Marta Karczewicz
Archive | 2011
Geert Van der Auwera; Xianglin Wang; Muhammed Zeyd Coban; Marta Karczewicz; Yunfei Zheng
Archive | 2011
Peisong Chen; Yunfei Zheng; Rajan Laxman Joshi; Muhammed Zeyd Coban; Marta Karczewicz
Archive | 2011
Muhammed Zeyd Coban; Marta Karczewicz