Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muhua Cao is active.

Publication


Featured researches published by Muhua Cao.


Thrombosis and Haemostasis | 2015

Phosphotidylserine exposure and neutrophil extracellular traps enhance procoagulant activity in patients with inflammatory bowel disease

Zhangxiu He; Yu Si; Tao Jiang; Ruishuang Ma; Yan Zhang; Muhua Cao; Tao Li; Zhipeng Yao; Lu Zhao; Shaohong Fang; Bo Yu; Zengxiang Dong; Hemant S. Thatte; Yayan Bi; Junjie Kou; Shufen Yang; Daxun Piao; Lirong Hao; Jin Zhou; Jialan Shi

Inflammatory bowel disease (IBD)-associated thromboembolic event often lacks precise aetiology. The aim of this study was to investigate the contribution of phosphatidylserine (PS) exposure and neutrophil extracellular traps (NETs) towards the hypercoagulable state in IBD. We demonstrated that the levels of PS exposed MPs and the sources of MP-origin, platelets, erythrocytes, leukocytes and cultured endothelial cells (ECs) were higher in IBD groups than in healthy controls using flow cytometry and confocal microscopy. Wright-Giemsa and immunofluorescence staining demonstrated that the elevated NETs were released by activated IBD neutrophils or by control neutrophils treated with IBD sera obtained from patients with the active disease. MPs and MP-origin cells in IBD groups, especially in active stage, markedly shortened coagulation time and had increased levels of fibrin, thrombin and FXa production as assessed by coagulation function assays. Importantly, we found that on stimulated ECs, PS rich membranes provided binding sites for FXa and FVa, promoting fibrin formation while TNF blockage or IgG depletion attenuated this effect. Treatment of control neutrophils with TNF and isolated IgG from PR3-ANCA-positive active IBD patients also resulted in the release of NETs. Blockade of PS with lactadherin prolonged coagulation time, decreased fibrin formation to control levels, and inhibited the procoagulant enzymes production in the MPs and MP-origin cells. NET cleavage by DNase I partly decreased PCA in IBD or stimulated neutrophils. Our study reveals a previously unrecognised link between hypercoagulable state and PS exposure or NETs, and may further explain the epidemiological association of thrombosis within IBD patients.


Shock | 2016

CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

Yan Zhang; Huan Meng; Ruishuang Ma; Zhangxiu He; Xiaoming Wu; Muhua Cao; Zhipeng Yao; Lu Zhao; Tao Li; Ruijuan Deng; Zengxiang Dong; Ye Tian; Yayan Bi; Junjie Kou; Hemant S. Thatte; Jin Zhou; Jialan Shi

ABSTRACT Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS+ MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.


Tumor Biology | 2016

Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

Chunfa Yang; Ruishuang Ma; Tao Jiang; Muhua Cao; Liangliang Zhao; Yayan Bi; Junjie Kou; Jialan Shi; Xiaoming Zou

Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.


Blood | 2017

Promyelocytic extracellular chromatin exacerbates coagulation and fibrinolysis in acute promyelocytic leukemia.

Muhua Cao; Tao Li; Zhangxiu He; Lixiu Wang; Xiaoyan Yang; Yan Kou; Lili Zou; Xue Dong; Valerie A. Novakovic; Yayan Bi; Junjie Kou; Bo Yu; Shaohong Fang; Jinghua Wang; Jin Zhou; Jialan Shi

Despite routine treatment of unselected acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA), early death because of hemorrhage remains unacceptably common, and the mechanism underlying this complication remains elusive. We have recently demonstrated that APL cells undergo a novel cell death program, termed ETosis, which involves release of extracellular chromatin. However, the role of promyelocytic extracellular chromatin in APL-associated coagulation remains unclear. Our objectives were to identify the novel role of ATRA-promoted extracellular chromatin in inducing a hypercoagulable and hyperfibrinolytic state in APL and to evaluate its interaction with fibrin and endothelial cells (ECs). Results from a series of coagulation assays have shown that promyelocytic extracellular chromatin increases thrombin and plasmin generation, causes a shortening of plasma clotting time of APL cells, and increases fibrin formation. DNase I but not anti-tissue factor antibody could inhibit these effects. Immunofluorescence staining showed that promyelocytic extracellular chromatin and phosphatidylserine on APL cells provide platforms for fibrin deposition and render clots more resistant to fibrinolysis. Additionally, coincubation assays revealed that promyelocytic extracellular chromatin is cytotoxic to ECs, converting them to a procoagulant phenotype. This cytotoxity was blocked by DNase I by 20% or activated protein C by 31%. Our current results thus delineate the pathogenic role of promyelocytic extracellular chromatin in APL coagulopathy. Furthermore, the remaining coagulation disturbance in high-risk APL patients after ATRA administration may be treatable by intrinsic pathway inhibition via accelerating extracellular chromatin degradation.


International Journal of Cardiology | 2016

Microparticles and blood cells induce procoagulant activity via phosphatidylserine exposure in NSTEMI patients following stent implantation

Lixiu Wang; Yayan Bi; Muhua Cao; Ruishuang Ma; Xiaoming Wu; Yan Zhang; Wenbo Ding; Yan Liu; Qian Yu; Yingqian Zhang; Hua Jiang; Yingchun Sun; Dongxia Tong; Li Guo; Zengxiang Dong; Ye Tian; Junjie Kou; Jialan Shi

BACKGROUND Relatively little is known about the role of phosphatidylserine (PS) in procoagulant activity (PCA) in patients with non-ST-elevated myocardial infarction (NSTEMI) after stent implantation. This study was designed to evaluate whether exposed PS on microparticles (MPs) and blood cells were involved in the hypercoagulable state in NSTEMI patients with stent implantation. METHODS NSTEMI patients (n=90) and healthy controls (n=20) were included in our study. PS exposure on MPs and blood cells was analyzed with flow cytometer and confocal microscope. PCA was evaluated by clotting time, purified coagulation complex assays and fibrin production assays. RESULTS Baseline levels of MPs and PS+ blood cells were significantly higher (P<0.001) in the patients than in controls. After stent implantation, a remarkable increase was observed in both MPs and PS+ blood cells. Specifically, PS+ MPs, PS+ platelets and erythrocytes peaked at 18h following stent implantation, while PS+ leukocytes peaked on day 2. In addition, circulating MPs (mostly derived from platelets, leukocytes, erythrocytes and endothelial cells) cooperating with PS+ blood cells, contributed to markedly shortened coagulation time and markedly increased FXa/thrombin/fibrin (all P<0.01) generation in patient group. Moreover, blockade of exposed PS on MPs and cells with lactadherin inhibited PCA by approximately 70%. CONCLUSIONS Our results suggest that PS+ MPs and blood cells play a procoagulant role in NSTEMI patients following stent implantation. Blockade of PS could become a novel therapeutic modality for the prevention of thrombosis in these patients.


Liver International | 2016

Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis

Xiaoming Wu; Zhipeng Yao; Lu Zhao; Yan Zhang; Muhua Cao; Tao Li; Wenbo Ding; Yan Liu; Ruijuan Deng; Zengxiang Dong; He Chen; Valerie A. Novakovic; Yayan Bi; Junjie Kou; Ye Tian; Jin Zhou; Jialan Shi

The mechanism of thrombogenicity in cirrhosis is largely unknown. Our objective was to study the relationship between phosphatidylserine on blood cells and endothelial cells and the hypercoagulable state in cirrhotic patients.


Nephrology Dialysis Transplantation | 2016

Increased phosphatidylserine-exposing microparticles and their originating cells are associated with the coagulation process in patients with IgA nephropathy

Zhangxiu He; Yan Zhang; Muhua Cao; Ruishuang Ma; Huan Meng; Zhipeng Yao; Lu Zhao; Yan Liu; Xiaoming Wu; Ruijuan Deng; Zengxiang Dong; Yayan Bi; Junjie Kou; Valerie A. Novakovic; Jialan Shi; Lirong Hao

BACKGROUND Relatively little information is available about phosphatidylserine positive (PS(+)) microparticles (MPs) and their originating cells in IgA nephropathy (IgAN) despite well-established intraglomerular coagulation. Our objectives were to detect PS exposure on MP membranes and MP-origin cells and to evaluate its role in procoagulant activity (PCA) and fibrin formation and their association with pathological lesions in the disease. METHODS Patients with IgAN and healthy controls were studied. Lactadherin was used to quantify PS exposure on MPs and MP-origin cells. PCA of MPs and MP-origin cells was evaluated by clotting time and purified coagulation complex assays. Fibrin production was determined by turbidity. PS exposure, fibrin strands and FVa/Xa binding were observed on MPs/cells using confocal microscopy. RESULTS Using flow cytometry, we found that IgAN patients had high levels of PS(+) MPs derived from lymphocytes, monocytes, neutrophils, platelets, erythrocytes and endothelial cells (ECs). The PS exposure on MP-origin cells also increased in these patients. MPs and MP-origin cells (leukocytes, platelets and erythrocytes) isolated from IgAN patients and ECs cultured with IgAN serum had a significantly shorter median coagulation time (P < 0.001), higher median intrinsic FXa (P < 0.001) and higher thrombin (P < 0.001) generation than controls. These coagulation functional assays were associated with the glomerular lesions. The lesions were also correlated with glomerular fibrin deposition (all P < 0.05). In the presence of patient MPs or their related cells, fibrin formation peaked faster with a higher maximum turbidity when compared with healthy controls. Blocking PS with lactadherin in the IgAN group prolonged coagulation time to control levels, inhibited the PCA up to 80% and markedly reduced fibrin formation. More importantly, we observed that fibrin strands formed on MPs and ECs in the same regions that bound lactadherin, similar to the FVa/Xa costaining. CONCLUSIONS We find that high levels of PS(+) MPs and the MP-origin cells are associated with the coagulation process in IgAN, and this may provide a previously unrecognized contribution to intraglomerular coagulation.


Molecular Medicine Reports | 2017

Prognostic implications and procoagulant activity of phosphatidylserine exposure of blood cells and microparticles in patients with atrial fibrillation treated with pulmonary vein isolation

Huan Meng; Junjie Kou; Ruishuang Ma; Wenbo Ding; Yan Kou; Muhua Cao; Zengxiang Dong; Yayan Bi; Hemant S. Thatte; Jialan Shi

The present study aimed to evaluate the procoagulant effects of phosphatidylserine (PS) exposure on blood cells and microparticles (MPs), and examine its role in predicting early recurrence atrial fibrillation (ERAF) in patients with atrial fibrillation (AF) treated with pulmonary vein isolation (PVI). Blood samples were obtained from 40 healthy controls and 56 patients with AF at baseline (prior to PVI), and 0, 1 h, 1 day, 3 days and 7 days following PVI. The exposure of PS (PS+) to blood cells (platelets, erythrocytes and leukocytes) and MPs was detected using flow cytometry. The procoagulant activity was evaluated by coagulation time, and the formation of factor Xa (FXa) and thrombin. In addition, independent factors associated with PS+ blood cells and MPs, and significant predictors of ERAF following PVI were investigated by statistical analyses. The numbers of PS+ blood cells and MPs were significantly increased by PVI (P<0.01). A significant decrease in coagulation time, and increases in FXa and thrombin were exhibited in the PS+ blood cells and MPs from patients with AF treated with PVI, whereas these alterations were inhibited by either lactadherin or anti-tissue factor (P<0.01). The maximum power of the PVI was significantly associated with platelet-derived MPs, and high-sensitivity C-reactive protein (hs-CRP) was closely associated with leukocyte-derived MPs and endothelial-derived MPs (EMPs) (P<0.01). In addition, hs-CRP and EMPs >355/µl were identified as independent predictors of ERAF (P<0.05). The increased numbers of PS+ platelets, erythrocytes, leukocytes and MPs contributed to the procoagulant state of AF, and hs-CRP and EMPs were able to predict ERAF following PVI.


Blood | 2016

Promyelocytic Extracellular Chromatin Exacerbates Coagulation Disorder in Acute Promyelocytic Leukemia

Muhua Cao; Ruishuang Ma; Xiaoming Wu; Lixiu Wang; Lu Zhao; Yan Zhang; Zhipeng Yao; Tao Li; Junjie Kou; Yayan Bi; Jin Zhou; Jialan Shi


Blood | 2016

Neutrophil Extracelluar Traps Contributes to the Hypercoagulable State and Liver Damage in Liver Cirrhosis

Xiaoming Wu; Lixiu Wang; Lu Zhao; Yan Zhang; Zhipeng Yao; Tao Li; Muhua Cao; Ruishuang Ma; Yayan Bi; Junjie Kou; Jin Zhou; Jialan Shi

Collaboration


Dive into the Muhua Cao's collaboration.

Top Co-Authors

Avatar

Junjie Kou

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yayan Bi

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Ruishuang Ma

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jialan Shi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Lu Zhao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Tao Li

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Wu

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Zhipeng Yao

Harbin Medical University

View shared research outputs
Top Co-Authors

Avatar

Jin Zhou

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge