Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mujalin Prasannarong is active.

Publication


Featured researches published by Mujalin Prasannarong.


Metabolism-clinical and Experimental | 2009

Modulation of insulin resistance in ovariectomized rats by endurance exercise training and estrogen replacement

Vitoon Saengsirisuwan; Somrudee Pongseeda; Mujalin Prasannarong; Kanokwan Vichaiwong; Chaivat Toskulkao

Estrogen is known to play a role in fat metabolism, but its role in carbohydrate metabolism remains controversial. We investigated alterations in carbohydrate and fat metabolism after prolonged estrogen deprivation by determining body weight, food intake, visceral fat content, serum lipids, glucose tolerance, and insulin action on glucose transport activity in isolated soleus and extensor digitorum longus muscles. In addition, effects of endurance exercise training with or without estrogen replacement on metabolic alterations occurring under estrogen deficiency were examined. Female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated (SHAM). The OVX rats remained sedentary, received 5 microg of 17beta-estradiol (E(2)), performed exercise training (ET), or underwent both estrogen treatment and exercise training (E(2) + ET) for 12 weeks. Compared with SHAM, OVX animals had greater final body weights, visceral fat content, and serum levels of total and low-density lipoprotein cholesterol (P < .05). Exercise training and E(2) significantly reduced body weights (6% and 25%), visceral fat (37% and 51%), and low-density lipoprotein cholesterol level (19% and 26%). Exercise training alone improved whole-body glucose tolerance (29%), which was enhanced to the greatest extent (51%) in the ET rats that also received E(2). Insulin-stimulated glucose transport activity in OVX group was lower than that in SHAM by 29% to 44% (P < .05). Exercise training and E(2) corrected the diminished insulin action on skeletal muscle glucose transport in OVX animals, which was partly due to elevated glucose transporter-4 protein expression. These findings indicate that 12 weeks of ovariectomy caused metabolic alterations mimicking features of the insulin resistance syndrome. Furthermore, these metabolic disturbances were attenuated by ET or E(2), whereas the beneficial interactive effects of ET and E(2) on these defects were not apparent.


Biochemical and Biophysical Research Communications | 2012

ANG-(1–7) reduces ANG II-induced insulin resistance by enhancing Akt phosphorylation via a Mas receptor-dependent mechanism in rat skeletal muscle

Mujalin Prasannarong; Fernando R. Santos; Erik J. Henriksen

The nonapeptide angiotensin II (ANG II) induces vasoconstriction via the ANG II type I receptor, while its splice product ANG-(1-7) elicits an antihypertensive effect via the Mas receptor. Although a critical role of ANG II in the etiology of skeletal muscle insulin resistance is well documented, the role of the ANG-(1-7)/Mas receptor axis in this context is poorly understood. Therefore, we determined whether ANG-(1-7) is effective in ameliorating the negative effects of ANG II on insulin-stimulated insulin signaling and glucose transport activity in isolated soleus muscle from normotensive lean Zucker rats. ANG II alone (500 nM for 2 h) decreased insulin-stimulated glucose transport activity by 45% (P < 0.05). In the presence of 500-1000 nM ANG-(1-7), insulin-stimulated glucose transport activity in muscle exposed to ANG II improved by ~30% (P < 0.05). Moreover, ANG-(1-7) treatment increased Akt Ser(473) phosphorylation (47%, P < 0.05) without an effect on glycogen synthase kinase-3β Ser(9) phosphorylation. The dependence of ANG-(1-7) action on the Mas receptor was assessed using A779 peptide, a selective Mas receptor antagonist. The positive effects of ANG-(1-7) on insulin-stimulated glucose transport activity and Akt Ser(473) phosphorylation in soleus muscle were completely prevented in presence of 1000 nM A779. In conclusion, the present study demonstrates that ANG-(1-7), via a Mas receptor-dependent mechanism, can ameliorate the inhibitory effect of ANG II on glucose transport activity in mammalian skeletal muscle, associated with enhanced Akt phosphorylation. These results provide further evidence supporting the targeting of the renin-angiotensin system for interventions designed to reduce insulin resistance in skeletal muscle tissue.


Endocrinology | 2013

Obesity-Related Alterations in Cardiac Lipid Profile and Nondipping Blood Pressure Pattern during Transition to Diastolic Dysfunction in Male db/db Mice

Vincent G. DeMarco; David A. Ford; Erik J. Henriksen; Annayya R. Aroor; Megan S. Johnson; Javad Habibi; Lixin Ma; Ming Yang; Carolyn J. Albert; John W. Lally; Caleb Ford; Mujalin Prasannarong; Melvin R. Hayden; Adam Whaley-Connell; James R. Sowers

Obesity and a nondipping circadian blood pressure (BP) pattern are associated with diastolic dysfunction. Ectopic lipid accumulation is increasingly recognized as an important metabolic abnormality contributing to diastolic dysfunction. However, little is known about the contribution of different lipids and the composition of lipid analytes to diastolic dysfunction. We have performed functional and structural studies and analyzed cardiac lipid profile at two time points during progression to diastolic dysfunction in a genetic model of obesity. Serial cardiac magnetic resonance imaging and telemetric measures of BP between 12 and 15 wk of age in obese male db/db mice indicated a nondipping circadian BP pattern and normal diastolic function at 12 wk that progressed to a deteriorating nondipping pattern and onset of diastolic dysfunction at 15 wk of age. Lipidomic analysis demonstrated elevated fatty acids and ceramides in db/db at 12 wk, but their levels were decreased at 15 wk, and this was accompanied by persistent mitochondrial ultrastructural abnormalities in concert with evidence of increased fatty acid oxidation and enhanced production of reactive oxygen species. Triacylglyceride and diacylglyceride levels were elevated at both 12 and 15 wk, but their composition changed to consist of more saturated and less unsaturated fatty acyl at 15 wk. An increase in the lipid droplets was apparent at both time points, and this was associated with increases in phosphatidycholine. In conclusion, a distinct pattern of myocardial lipid remodeling, accompanied by oxidative stress, is associated with the onset of diastolic dysfunction in obese, insulin-resistant db/db mice.


Molecular and Cellular Endocrinology | 2013

The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle

Erik J. Henriksen; Mujalin Prasannarong

The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue.


Biochimica et Biophysica Acta | 2012

Calorie restriction prevents the development of insulin resistance and impaired insulin signaling in skeletal muscle of ovariectomized rats

Mujalin Prasannarong; Kanokwan Vichaiwong; Vitoon Saengsirisuwan

Insulin resistance of skeletal muscle glucose transport due to prolonged loss of ovarian function in ovariectomized (OVX) rats is accompanied by other features of the metabolic syndrome and may be confounded by increased calorie consumption. In this study, we investigated the role of calorie consumption in the development of insulin resistance in OVX rats. In addition, we examined the cellular mechanisms underlying skeletal muscle insulin resistance in OVX rats. Female Sprague-Dawley rats were ovariectomized (OVX) or sham-operated (SHAM). OVX rats either had free access to food, pair feeding (PF) with SHAM or received a 35% reduction in food intake (calorie restriction; CR) for 12weeks. Compared with SHAM, ovariectomy induced skeletal muscle insulin resistance, which was associated with decreases (32-70%) in tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), IRS-1 associated p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), and Akt Ser(473) phosphorylation whereas insulin-stimulated phosphorylation of IRS-1 Ser(307), SAPK/JNK Thr(183)/Tyr(185), and p38 mitogen-activated protein kinase (MAPK) Thr(180)/Tyr(182) was increased (24-62%). PF improved the serum lipid profile but did not restore insulin-stimulated glucose transport, indicating that insulin resistance in OVX rats is a consequence of ovarian hormone deprivation. In contrast, impaired insulin sensitivity and defective insulin signaling were not observed in the skeletal muscle of OVX+CR rats. Therefore, we provide evidence for the first time that CR effectively prevents the development of insulin resistance and impaired insulin signaling in the skeletal muscle of OVX rats.


Free Radical Biology and Medicine | 2009

Attenuation of oxidant-induced muscle insulin resistance and p38 MAPK by exercise training

Kanokwan Vichaiwong; Erik J. Henriksen; Chaivat Toskulkao; Mujalin Prasannarong; Tepmanas Bupha-Intr; Vitoon Saengsirisuwan

We have recently shown that direct exposure to an oxidant stress induces resistance to insulin in glucose transport activity in intact rat skeletal muscle. In this study, we evaluated the effectiveness of prior exercise training in attenuating oxidative stress-induced insulin resistance. Male Sprague-Dawley rats either remained sedentary or underwent a treadmill-running regimen for 6 weeks. Isolated soleus muscles were incubated in the absence or presence of hydrogen peroxide (H(2)O(2)) (50-70 microM) with or without insulin for 2 h. In the sedentary animals, H(2)O(2) significantly inhibited insulin action on glucose transport activity and phosphorylation of Akt (Ser(473)), by 28 and 24%, respectively, and substantially activated the phosphorylation levels of p38 MAPK (Thr(180)/Tyr(182)) by 43% and SAPK/JNK (Thr(183)/Tyr(185)) by 111%. Interestingly, the inhibitory effects of H(2)O(2) on insulin-stimulated glucose transport and Akt (Ser(473)) phosphorylation were attenuated by 43 and 75% in exercise-trained muscles. Additionally, the phosphorylation level of p38 MAPK (Thr(180)/Tyr(182)) triggered by oxidative stress was reduced by 59% in the exercise-trained muscle. We have demonstrated for the first time in mammalian skeletal muscle that endurance exercise training can partially protect against glucose transport resistance to insulin induced by oxidative stress, and this benefit of exercise training is at least in part mediated through the insulin signaling pathway and stress-activated signaling elements.


Journal of Agricultural and Food Chemistry | 2012

Long-term effect of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation in ovariectomized rats.

Suttira Intapad; Vitoon Saengsirisuwan; Mujalin Prasannarong; Aporn Chuncharunee; Wisuda Suvitayawat; Ratchanaporn Chokchaisiri; Apichart Suksamrarn; Pawinee Piyachaturawat

Phytoestrogens have been implicated as promising therapeutic agents to treat the vascular impairment seen in menopausal women. The present study investigated the long-term effects of phytoestrogens from Curcuma comosa Roxb. on vascular relaxation of isolated thoracic aorta from ovariectomized (OVX) rats. Treatment of OVX rats for 12 weeks with C. comosa powder, hexane extract, and a novel phytoestrogen, diarylheptanoid-D3, [(3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol] prevented impairment of the endothelium-dependent relaxation response to acetylcholine in OVX, but not the endothelium-denude aortic ring relaxation in response to sodium nitroprusside. These data suggest that the vascular relaxation effect of C. comosa is mediated via endothelial cells. Treatment with D3 also increased endothelial nitric oxide synthase (eNOS) and estrogen receptor-α (ERα) protein expression in the aorta of OVX rats and suppressed elevated tumor necrosis factor-α (TNF-α) expression in OVX aortic rings. These results indicate that C. comosa treatment prevents impairment of vascular relaxation in estrogen-deficient animals via the ER-eNOS pathway as well as through its ability to promote an anti-inflammatory response.


BMC Complementary and Alternative Medicine | 2012

Improvements of insulin resistance in ovariectomized rats by a novel phytoestrogen from Curcuma comosa Roxb

Mujalin Prasannarong; Vitoon Saengsirisuwan; Pawinee Piyachaturawat; Apichart Suksamrarn

BackgroundCurcuma comosa Roxb. (C. comosa) is an indigenous medicinal herb that has been used in Thailand as a dietary supplement to relieve postmenopausal symptoms. Recently, a novel phytoestrogen, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol or compound 049, has been isolated and no study thus far has investigated the role of C. comosa in preventing metabolic alterations occurring in estrogen-deprived state. The present study investigated the long-term effects (12 weeks) of C. comosa hexane extract and compound 049 on insulin resistance in prolonged estrogen-deprived rats.MethodsFemale Sprague-Dawley rats were ovariectomized (OVX) and treated with C. comosa hexane extract (125 mg, 250 mg, or 500 mg/kg body weight (BW)) and compound 049 (50 mg/kg BW) intraperitoneally three times per week for 12 weeks. Body weight, food intake, visceral fat weight, uterine weight, serum lipid profile, glucose tolerance, insulin action on skeletal muscle glucose transport activity, and GLUT-4 protein expression were determined.ResultsProlonged ovariectomy resulted in dyslipidemia, impaired glucose tolerance and insulin-stimulated skeletal muscle glucose transport, as compared to SHAM. Treatment with C. comosa hexane extract and compound 049, three times per week for 12 weeks, markedly reduced serum total cholesterol and low-density lipoprotein levels, improved insulin sensitivity and partially restored uterine weights in ovariectomized rats. In addition, compound 049 or high doses of C. comosa hexane extract enhanced insulin-mediated glucose uptake in skeletal muscle and increased muscle GLUT-4 protein levels.ConclusionsTreatment with C. comosa and its diarylheptanoid derivative improved glucose and lipid metabolism in estrogen-deprived rats, supporting the traditional use of this natural phytoestrogen as a strategy for relieving insulin resistance and its related metabolic defects in postmenopausal women.


Archives of Physiology and Biochemistry | 2012

Contribution of the serine kinase c-Jun N-terminal kinase (JNK) to oxidant-induced insulin resistance in isolated rat skeletal muscle

Fernando R. Santos; Maggie K. Diamond-Stanic; Mujalin Prasannarong; Erik J. Henriksen

The specific and direct contribution of the stress-activated serine kinase c-Jun N-terminal kinase (JNK) in the development of oxidative stress-induced insulin resistance of the glucose transport system in mammalian skeletal muscle is not fully understood. We assessed the specific role of JNK in the development of insulin resistance caused by in vitro exposure of rat soleus muscle to low levels (30–40 µM) of the oxidant hydrogen peroxide (H2O2) for up to 6 h. Oxidant exposure caused significant (p < 0.05) decreases in insulin-stimulated glucose transport activity (up to 42%) and Akt Ser473 phosphorylation (up to 67%), and increased (up to 74%) phosphorylation (Thr183/Tyr185) of JNK1 and JNK2/3 isoforms. Importantly, insulin-stimulated glucose transport activity in the presence of H2O2 was moderately improved with the selective JNK inhibitor SP600125. These results indicate that activation of the serine kinase JNK contributes, at least in part, to oxidative stress-induced insulin resistance in isolated mammalian skeletal muscle.


Archives of Physiology and Biochemistry | 2014

The lipid peroxidation end-product and oxidant 4-hydroxynonenal induces insulin resistance in rat slow-twitch skeletal muscle.

Mujalin Prasannarong; Fernando R. Santos; Payam Hooshmand; Paria Hooshmand; Franchesca J. Giovannini; Erik J. Henriksen

Abstract Context: The lipid peroxidation end-product and oxidant 4-hydroxynonenal (4-HNE) impairs cell function. However, the impact of 4-HNE on the glucose transport system in mammalian slow-twitch skeletal muscle is not known. Objective: We assessed the effects of 4-HNE on insulin signalling and glucose transport activity in slow-twitch muscle by incubating soleus strips from lean Zucker rats with 4-HNE (50 µM) in the absence or presence of insulin (5 mU/ml) for up to 6 hr. Results: Insulin-stimulated glucose transport activity was significantly (p < 0.05) decreased by 4-HNE at 2 hr. AS160 Thr642 phosphorylation was decreased at 2 hr, whereas Akt Ser473 phosphorylation and IRS-1 protein expression were not substantially changed until 4 hr. IRS-2 protein expression was slightly decreased only at 6 hr. Conclusions: The lipid peroxidation end-product and oxidant 4-HNE induces insulin resistance of glucose transport activity in rat slow-twitch skeletal muscle, initially associated with impaired phosphorylation of AS160.

Collaboration


Dive into the Mujalin Prasannarong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lixin Ma

University of Missouri

View shared research outputs
Researchain Logo
Decentralizing Knowledge