Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mukram Mohamed Mackeen is active.

Publication


Featured researches published by Mukram Mohamed Mackeen.


Chemistry & Biology | 2011

Activity-Based Chemical Proteomics Accelerates Inhibitor Development for Deubiquitylating Enzymes

Mikael Altun; Holger B. Kramer; Lianne I. Willems; Jeffrey L. McDermott; Craig A. Leach; Seth J. Goldenberg; K. G. Suresh Kumar; Rebecca Konietzny; R. Fischer; Edward Kogan; Mukram Mohamed Mackeen; Joanna F. McGouran; Svetlana V. Khoronenkova; Jason L. Parsons; Grigory L. Dianov; Benjamin Nicholson; Benedikt M. Kessler

Converting lead compounds into drug candidates is a crucial step in drug development, requiring early assessment of potency, selectivity, and off-target effects. We have utilized activity-based chemical proteomics to determine the potency and selectivity of deubiquitylating enzyme (DUB) inhibitors in cell culture models. Importantly, we characterized the small molecule PR-619 as a broad-range DUB inhibitor, and P22077 as a USP7 inhibitor with potential for further development as a chemotherapeutic agent in cancer therapy. A striking accumulation of polyubiquitylated proteins was observed after both selective and general inhibition of cellular DUB activity without direct impairment of proteasomal proteolysis. The repertoire of ubiquitylated substrates was analyzed by tandem mass spectrometry, identifying distinct subsets for general or specific inhibition of DUBs. This enabled identification of previously unknown functional links between USP7 and enzymes involved in DNA repair.


Proteomics | 2011

Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline

David C. Trudgian; Gabriela Ridlova; R. Fischer; Mukram Mohamed Mackeen; Nicola Ternette; Oreste Acuto; Benedikt M. Kessler; Benjamin Thomas

Normalized spectral index quantification was recently presented as an accurate method of label‐free quantitation, which improved spectral counting by incorporating the intensities of peptide MS/MS fragment ions into the calculation of protein abundance. We present SINQ, a tool implementing this method within the framework of existing analysis software, our freely available central proteomics facilities pipeline (CPFP). We demonstrate, using data sets of protein standards acquired on a variety of mass spectrometers, that SINQ can rapidly provide useful estimates of the absolute quantity of proteins present in a medium‐complexity sample. In addition, relative quantitation of standard proteins spiked into a complex lysate background and run without pre‐fractionation produces accurate results at amounts above 1 fmol on column. We compare quantitation performance to various precursor intensity‐ and identification‐based methods, including the normalized spectral abundance factor (NSAF), exponentially modified protein abundance index (emPAI), MaxQuant, and Progenesis LC‐MS. We anticipate that the SINQ tool will be a useful asset for core facilities and individual laboratories that wish to produce quantitative MS data, but lack the necessary manpower to routinely support more complicated software workflows. SINQ is freely available to obtain and use as part of the central proteomics facilities pipeline, which is released under an open‐source license.


Nature Chemical Biology | 2012

Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans

Wei Ge; Alexander Wolf; Tianshu Feng; Chia Hua Ho; Rok Sekirnik; Adam Zayer; Nicolas Granatino; Matthew E. Cockman; Christoph Loenarz; Nikita D. Loik; Adam P. Hardy; Timothy D. W. Claridge; Refaat B. Hamed; Rasheduzzaman Chowdhury; Lingzhi Gong; Carol V. Robinson; David C. Trudgian; Miao Jiang; Mukram Mohamed Mackeen; James S. O. McCullagh; Yuliya Gordiyenko; Armin Thalhammer; Atsushi Yamamoto; Ming Yang; Phebee Liu-Yi; Zhihong Zhang; Marion S. Schmidt-Zachmann; Benedikt M. Kessler; Peter J. Ratcliffe; Gail M. Preston

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy

Christoph Loenarz; Rok Sekirnik; Armin Thalhammer; Wei Ge; Ekaterina Spivakovsky; Mukram Mohamed Mackeen; Michael A. McDonough; Matthew E. Cockman; Benedikt M. Kessler; Peter J. Ratcliffe; Alexander Wolf; Christopher J. Schofield

Significance The processing of DNA sequences into proteins is fine-tuned to meet the conflicting demands of accuracy and speed. DNA mutations can introduce premature stop codons, leading to inactive proteins. We report that oxygen-dependent posttranslational modification of the ribosomal decoding center affects stop codon readthrough in an mRNA sequence-dependent manner. Our work demonstrates that oxygenases catalyzing RPS23 hydroxylation are conserved in eukaryotes, including yeasts, flies, and humans. In basal eukaryotes, RPS23 undergoes two hydroxylations, whereas in animals we only observe one hydroxylation. Yeast ribosomes lacking hydroxylation manifest altered stop codon readthrough up to ∼10-fold. The results reveal oxygen-dependent modifications that regulate translational accuracy and suggest unprecedented approaches to modulating ribosomal accuracy for medicinal application. The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.


Journal of Proteome Research | 2010

Small-molecule-based inhibition of histone demethylation in cells assessed by quantitative mass spectrometry.

Mukram Mohamed Mackeen; Holger B. Kramer; Kai Hsuan Chang; Matthew L. Coleman; Richard J. Hopkinson; Christopher J. Schofield; Benedikt M. Kessler

Post-translational modifications on histones are an important mechanism for the regulation of gene expression and are involved in all aspects of cell growth and differentiation, as well as pathological processes including neurodegeneration, autoimmunity, and cancer. A major challenge within the chromatin field is to develop methods for the quantitative analysis of histone modifications. Here we report a mass spectrometry (MS) approach based on ultraperformance liquid chromatography high/low collision switching (UPLC-MS(E)) to monitor histone modifications in cells. This approach is exemplified by the analysis of trimethylated lysine-9 levels in histone H3, following a simple chemical derivatization procedure with d(6)-acetic anhydride. This method was used to study the inhibition of histone demethylases with pyridine-2,4-dicarboxylic acid (PDCA) derivatives in cells. Our results show that the PDCA-dimethyl ester inhibits JMJD2A catalyzed demethylation of lysine-9 on histone H3 in human HEK 293T cells. Demethylase inhibition, as observed by MS analyses, was supported by immunoblotting with modification-specific antibodies. The results demonstrate that PDCA derived small molecules are cell permeable demethylase inhibitors and reveal that quantitative MS is a useful tool for measuring post-translational histone modifications in cells.


Chemistry & Biology | 2011

A Photoreactive Small-Molecule Probe for 2-Oxoglutarate Oxygenases

Dante Rotili; Mikael Altun; Akane Kawamura; Alexander Wolf; R. Fischer; Ivanhoe K. H. Leung; Mukram Mohamed Mackeen; Ya Min Tian; Peter J. Ratcliffe; Antonello Mai; Benedikt M. Kessler; Christopher J. Schofield

2-oxoglutarate (2-OG)-dependent oxygenases have diverse roles in human biology. The inhibition of several 2-OG oxygenases is being targeted for therapeutic intervention, including for cancer, anemia, and ischemic diseases. We report a small-molecule probe for 2-OG oxygenases that employs a hydroxyquinoline template coupled to a photoactivable crosslinking group and an affinity-purification tag. Following studies with recombinant proteins, the probe was shown to crosslink to 2-OG oxygenases in human crude cell extracts, including to proteins at endogenous levels. This approach is useful for inhibitor profiling, as demonstrated by crosslinking to the histone demethylase FBXL11 (KDM2A) in HEK293T nuclear extracts. The results also suggest that small-molecule probes may be suitable for substrate identification studies.


Tetrahedron | 2002

Total synthesis of the Glc3Man N-glycan tetrasaccharide

S. C. Ennis; Ian Cumpstey; Antony J. Fairbanks; Terry D. Butters; Mukram Mohamed Mackeen; Mark R. Wormald

Abstract The total synthesis of the tetrasaccharide Glcα(1→2)Glcα(1→3)Glcα(1→3)ManαOMe, which corresponds to the terminal tetrasaccharide portion of the glucose terminated arm of the N-glycan tetradecasaccharide, was achieved by the use of differentially protected selenoglycosides and thioglycosides as glycosyl donors, all of which possessed non-participating protection of the 2-hydroxyl group. Favourable anomeric stereoselectivity was achieved for the glycosylation reactions by the use of ether as solvent, or co-solvent. Global deprotection by catalytic hydrogenation with palladium acetate in a mixture of ethanol and acetic acid yielded the target tetrasaccharide.


Nucleic Acids Research | 2014

Jumonji domain containing protein 6 (Jmjd6) modulates splicing and specifically interacts with arginine–serine-rich (RS) domains of SR- and SR-like proteins

Astrid Heim; Christina Grimm; Udo Müller; Simon Häußler; Mukram Mohamed Mackeen; Juliane Merl; Stefanie M. Hauck; Benedikt M. Kessler; Christopher J. Schofield; Alexander Wolf; Angelika Böttger

The Fe(II) and 2-oxoglutarate dependent oxygenase Jmjd6 has been shown to hydroxylate lysine residues in the essential splice factor U2 auxiliary factor 65 kDa subunit (U2AF65) and to act as a modulator of alternative splicing. We describe further evidence for the role of Jmjd6 in the regulation of pre-mRNA processing including interactions of Jmjd6 with multiple arginine–serine-rich (RS)-domains of SR- and SR-related proteins including U2AF65, Luc7-like protein 3 (Luc7L3), SRSF11 and Acinus S′, but not with the bona fide RS-domain of SRSF1. The identified Jmjd6 target proteins are involved in different mRNA processing steps and play roles in exon dependent alternative splicing and exon definition. Moreover, we show that Jmjd6 modifies splicing of a constitutive splice reporter, binds RNA derived from the reporter plasmid and punctually co-localises with nascent RNA. We propose that Jmjd6 exerts its splice modulatory function by interacting with specific SR-related proteins during splicing in a RNA dependent manner.


Journal of the American Chemical Society | 2010

Synthesis and solution-phase conformation of the RG-I fragment of the plant polysaccharide pectin reveals a modification-modulated assembly mechanism.

Eoin M. Scanlan; Mukram Mohamed Mackeen; Mark R. Wormald; Benjamin G. Davis

The syntheses of pure RG-I fragments of key plant matrix biomolecule pectin using a counterintuitive late-stage convergent cis-glycosylation has allowed detailed analyses of their solution-phase conformations, metal binding affinities, pK(a) values, self-assembly equilibria, and diffusional kinetics. These reveal a striking, right-handed 3(1)-helix that provides an effective and repeating lateral display of putative liganding carboxylates. Moreover, these heteropolymeric structures allow units as short as tetrasaccharides to self-assemble through carbohydrate-carbohydrate interactions that are induced by the presence of Ca(II), a known dynamic trigger in planta. These self-assembly properties can be switched simply by the addition or removal of a single methyl group in this repeating unit through methyl (de)esterification, another known dynamic trigger in planta. Together, the combined effect of Ca(II) and methylation revealed here suggests a concerted molecular basis for these two major dynamic modifications in planta.


Organic and Biomolecular Chemistry | 2012

Fluorescence-based active site probes for profiling deubiquitinating enzymes

Joanna F. McGouran; Holger B. Kramer; Mukram Mohamed Mackeen; Katalin Di Gleria; Mikael Altun; Benedikt M. Kessler

Novel ubiquitin-based active site probes including a fluorescent tag have been developed and evaluated. A new, functionalizable electrophilic trap is utilized allowing for late stage diversification of the probe. Attachment of fluorescent dyes allowed direct detection of endogenous deubiquitinating enzyme (DUB) activities in cell extracts by in-gel fluorescence imaging.

Collaboration


Dive into the Mukram Mohamed Mackeen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farah Diba Abu Bakar

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge