Mukul Minocha
University of Missouri–Kansas City
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mukul Minocha.
International Journal of Pharmaceutics | 2012
Mukul Minocha; Varun Khurana; Bin Qin; Dhananjay Pal; Ashim K. Mitra
The objectives of this study were (i) to characterize the interaction of vandetanib with P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) in vitro and in vivo (ii) to study the modulation of P-gp and BCRP mediated efflux of vandetanib with specific transport inhibitors and m-TOR inhibitors, everolimus and temsirolimus. Cellular accumulation and bi-directional transport studies in MDCKII cell monolayers were conducted to delineate the role of efflux transporters on disposition of vandetanib. Brain distribution studies were conducted in male FVB wild-type mice with vandetanib administered intravenously either alone or in the presence of specific inhibitors and m-TOR inhibitors. In vitro studies suggested that vandetanib is a high affinity substrate of Bcrp1 but is not transported by P-gp. Interestingly, in vivo brain distribution studies in FVB wild type mice indicated that vandetanib penetration into the brain is restricted by both Bcrp1 and P-gp mediated active efflux at the blood brain barrier (BBB). Co-administration of elacridar, a dual P-gp/BCRP inhibitor increased the brain to plasma concentration ratio of vandetanib upto 5 fold. Of the two m-TOR pathway inhibitors examined; everolimus showed potent effect on modulating vandetanib brain penetration whereas no significant affect on vandetanib brain uptake was observed following temsirolimus co-administration. This finding could be clinically relevant as everolimus can provide synergistic pharmacological effect in addition to primary role of vandetanib efflux modulation at BBB for the treatment of brain tumors.
International Journal of Pharmaceutics | 2012
Mukul Minocha; Varun Khurana; Bin Qin; Dhananjay Pal; Ashim K. Mitra
Primary objective of this investigation was to delineate the differential impact of efflux transporters P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) on brain disposition and plasma pharmacokinetics of pazopanib. In addition, this research investigated whether inhibition of these efflux transporters with clinically relevant efflux modulators canertinib or erlotinib could be a viable strategy for improving pazopanib brain delivery. In vitro assays with MDCKII cell monolayers suggested that pazopanib is a high affinity substrate for Bcrp1 and a moderate substrate for P-gp. Co-incubation with specific transport inhibitors restored cell accumulation and completely abolished the directionality of pazopanib flux. Brain and plasma pharmacokinetic studies were conducted in FVB wild type mice in the absence and presence of specific transport inhibitors. Drug levels in plasma and brain were determined using a validated high performance liquid chromatography method using vandetanib as an internal standard. In vivo studies indicated that specific inhibition of either P-gp (by zosuquidar or LY335979) or Bcrp1 (by Ko143) alone did not significantly alter pazopanib brain accumulation. However, dual P-gp/Bcrp1 inhibition by elacridar (GF120918), significantly enhanced pazopanib brain penetration by ~5-fold without altering its plasma concentrations. Thus, even though Bcrp1 showed higher affinity towards pazopanib in vitro, in vivo at the mouse BBB both P-gp and Bcrp1 act in concert to limit brain accumulation of pazopanib. Furthermore, erlotinib and canertinib as clinically relevant efflux modulators efficiently abrogated directionality in pazopanib efflux in vitro and their co-administration resulted in 2-2.5-fold increase in pazopanib brain accumulation in vivo. Further pre-clinical and clinical investigations are warranted as erlotinib or canertinib may have a synergistic pharmacological effect in addition to their primary role of pazopanib efflux modulation as a combination regimen for the treatment of recurrent brain tumors.
Journal of Ocular Pharmacology and Therapeutics | 2009
Sudharshan Hariharan; Mukul Minocha; Gyan P. Mishra; Dhananjay Pal; Rohit Krishna; Ashim K. Mitra
PURPOSE The objectives of this work were (i) to screen ocular hypotensive prostaglandin (PGF2 alpha) analogs--bimatoprost, latanoprost, and travoprost as well as their free acid forms--for interaction with efflux pumps on the cornea and (ii) to assess the modulation of efflux upon co-administration of these prostaglandin analogs. METHODS Cultured rabbit primary corneal epithelial cells (rPCEC) were employed as an in vitro model for rabbit cornea. Transporter-specific interaction studies were carried out using Madin-Darby canine kidney (MDCK) cells overexpressing MDR1, MRP1, MRP2, MRP5, and BCRP. Freshly excised rabbit cornea was used as an ex vivo model to determine transcorneal permeability. RESULTS Cellular accumulation studies clearly showed that all prostaglandin analogs and their free acid forms are substrates of MRP1, MRP2, and MRP5. Bimatoprost was the only prostaglandin analog in this study to interact with P-gp. In addition, none of these molecules showed any affinity for BCRP. K (i) values of these prostaglandin analogs obtained from dose-dependent inhibition of erythromycin efflux in rPCEC showed bimatoprost (82.54 microM) and travoprost (94.77 microM) to have similar but higher affinity to efflux pumps than latanoprost (163.20 microM). Ex vivo studies showed that the permeation of these molecules across cornea was significantly elevated in the presence of specific efflux modulators. Finally, both in vitro and ex vivo experiments demonstrated that the efflux of these prostaglandin analogs could be modulated by co-administering them together. CONCLUSION Bimatoprost, latanoprost, travoprost, and their free acid forms are substrates of multiple drug efflux pumps on the cornea. Co-administration of these molecules together is a viable strategy to overcome efflux, which could simultaneously elicit a synergistic pharmacological effect, since these molecules have been shown to activate different receptor population for the reduction of intraocular pressure (IOP).
Journal of Chromatography B | 2012
Mukul Minocha; Varun Khurana; Ashim K. Mitra
A simple, rapid and sensitive liquid chromatography-tandem mass spectrometric (LC/MS-MS) method has been developed and validated for the quantitative determination of pazopanib in mouse plasma and brain tissue homogenate. Single liquid-liquid extraction step with ethyl acetate was employed for analysis of pazopanib and the internal standard (IS); vandetanib. HPLC separation was performed on an XTerra(®) MS C18 column 50 mm × 4.6 mm, 5.0 μm. The mobile phase consisted of 70% acetonitrile and 30% water with 0.1% formic acid, pumped at a flow rate of 0.25 ml/min. Analysis time was 3.5 min per run and both the analyte and IS eluted within 1.8-2.0 min. Multiple reactions monitoring (MRM) mode was utilized to detect the compounds of interest. The mass spectrometer was operated in the positive ion mode for detection. The precursor to product ions (Q1→Q3) selected for pazopanib and internal standard during quantitative optimization were (m/z) 438.1→357.2 and 475.0→112.2 respectively. The calibration curves were linear over the range of 3.9-1000 ng/ml in both biological matrices. Lower limit of quantification (LLOQ) for mouse plasma and brain tissue was 3.9 ng/ml. The values for inter and intra day precision and accuracy were well within the ranges acceptable for analytical assessment (<15%). This method was applied to determine brain to plasma concentration ratio and relevant pharmacokinetic parameters of pazopanib after a single intravenous dose of 5 mg/kg in FVB wild type mice.
Drug metabolism and drug interactions | 2014
Varun Khurana; Mukul Minocha; Dhananjay Pal; Ashim K. Mitra
Abstract Background: The metabolism of tyrosine kinase inhibitors (TKIs) is mainly mediated via hepatic route, but the mechanism responsible for their hepatocellular accumulation is still unknown. This study was designed to understand the contribution of organic anion transporting polypeptides (OATPs) in the hepatic uptake of selected TKIs – pazopanib, canertinib, erlotinib, vandetanib and nilotinib. Methods: Michaelis-Menten (MM) kinetic parameters for TKIs were determined by concentration-dependent cellular accumulation of selected TKIs using Chinese hamster ovary cells – wild type as well as transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins. Results: The MM constant (Km) values of OATP-1B1 for nilotinib and vandetanib are 10.14±1.91 and 2.72±0.25 μM, respectively, and Vmax values of OATP-1B1 for nilotinib and vandetanib were 6.95±0.47 and 75.95±1.99 nmol/mg protein per minute, respectively. Likewise, Km values of OATP-1B3 for canertinib, nilotinib and vandetanib were 12.18±3.32, 7.84±1.43 and 4.37±0.79 μM, respectively, and Vmax values of OATP-1B3 for canertinib, nilotinib and vandetanib were 15.34±1.59, 6.75±0.42 and 194.64±10.58 nmol/mg protein per minute, respectively. Canertinib did not exhibit any substrate specificity toward OATP-1B1. Also, erlotinib and pazopanib did not exhibit any substrate specificity toward OATP-1B1 and -1B3. Conclusions: Because selected TKIs are the substrates of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated drug-drug interactions (DDIs). Any alteration in the function of these hepatic OATPs might account for the pharmacokinetic variability of TKIs.
International Journal of Pharmaceutics | 2011
Mukul Minocha; Nanda K. Mandava; Deep Kwatra; Dhananjay Pal; William R. Folk; Ravinder Earla; Ashim K. Mitra
Sutherlandia frutescens (sutherlandia), an African herbal supplement was recommended by the South African Ministry of Health for the treatment of AIDS patients. However, no reports yet exist delineating the effect of sutherlandia on pharmacokinetics of antiretroviral agents. Therefore, this investigation aimed at screening the effects of short term and chronic exposure of sutherlandia on oral bioavailability and pharmacokinetics of nevirapine (NVP), a non-nucleoside reverse transcriptase inhibitor, in Sprague Dawley rats. NVP (6 mg/kg) was administered orally alone (control) and with co-administration of sutherlandia; short term (12 mg/kg single dose) and long term (12 mg/kg, once a day for 5 days). No significant difference in the pharmacokinetic parameters of NVP was found upon short-term co-administration of Sutherlandia. However, there was a 50% decrease (p<0.05) in the AUC and C(max) values of NVP after 5 days of chronic exposure with Sutherlandia. In addition, quantitative RT-PCR studies demonstrated a 2-3-fold increase in the hepatic and intestinal mRNA expression of CYP3A2, relative to vehicle control. To further confirm, if this could translate into a clinically relevant pharmacokinetic interaction in patients, we tested this hypothesis employing LS-180 cells as an in vitro induction model for human CYP3A4. Ninety-six hours post treatment, similar to positive control rifampicin (25 μM), sutherlandia extract (300 μg/mL) resulted in elevated m-RNA expression levels and functional activity of CYP3A4 (human homologue of rodent CYP3A2) in LS-180 cells. Taken together, these results suggest that a potential drug-herb interaction is possible when NVP is co-administered with S. frutescens, although this hypothesis still remains to be investigated in a clinical setting.
Drug metabolism and drug interactions | 2014
Varun Khurana; Mukul Minocha; Dhananjay Pal; Ashim K. Mitra
Abstract Background: The potential of tyrosine kinase inhibitors (TKIs) interacting with other therapeutics through hepatic uptake transporter inhibition has not been fully delineated in drug-drug interactions (DDIs). This study was designed to estimate the half-maximal inhibitory concentration (IC50) values of five small-molecule TKIs (pazopanib, nilotinib, vandetanib, canertinib and erlotinib) interacting with organic anion-transporting polypeptides (OATPs): OATP-1B1 and -1B3. Methods: The IC50 values of TKIs and rifampicin (positive control) were determined by concentration-dependent inhibition of TKIs on cellular accumulation of radiolabeled probe substrates [3H]estrone sulfate and [3H]cholecystokinin octapeptide. Chinese hamster ovary cells transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins, respectively, were utilized to carry out these studies. Results: Pazopanib and nilotinib show inhibitory activity on OATP-1B1 transporter protein. IC50 values for rifampicin, pazopanib and nilotinib were 10.46±1.15, 3.89±1.21 and 2.78±1.13 μM, respectively, for OATP-1B1 transporter. Vandetanib, canertinib and erlotinib did not exhibit any inhibitory potency toward OATP-1B1 transporter protein. Only vandetanib expressed inhibitory potential toward OATP-1B3 transporter protein out of the five selected TKIs. IC50 values for rifampicin and vandetanib for OATP-1B3 transporter inhibition were 3.67±1.20 and 18.13±1.21 μM, respectively. No significant inhibition in the presence of increasing concentrations of pazopanib, nilotinib, canertinib and erlotinib were observed for OATP-1B3 transporter. Conclusions: Because selected TKIs are inhibitors of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated DDIs. These findings provide the basis for further preclinical and clinical studies investigating the transporter-based DDI potential of TKIs.
Journal of Drug Delivery Science and Technology | 2010
Nanda K. Mandava; R.K. Oberoi; Mukul Minocha; Ashim K. Mitra
The pharmacological behavior of various drugs is severely affected by biological barriers such as epithelial tight junctions, efflux proteins and metabolizing enzymes. Apart from the biological barriers, physicochemical properties of drug molecules such as molecular weight, lipophilicity, surface charge and solubility also play an important role in absorption characteristics of drug candidates. Pharmacological properties affected by efflux pumps such as P-gp and MRPs include bioavailability, hepatobiliary and urinary excretion of drugs as well as drug metabolites. This leads to sub-therapeutic concentrations of various potential drugs at the target site. One of the strategies to overcome these biological barriers is transporter targeted prodrug design. Prodrug derivatization targeting membrane transporters and receptors improves drug absorption. Various prodrugs which have been synthesized so far demonstrated enhanced bioavailability and tissue specificity. This review mainly focuses on the efflux pumps which play an important role in drug absorption and a few strategies to overcome these efflux pumps.
Investigative Ophthalmology & Visual Science | 2014
Chandramouli Natarajan; Ravi Vaishya; Mitan R. Gokulgandhi; Sulabh Patel; Mukul Minocha; Ashim K. Mitra
Toxicology Letters | 2010
Ashim K. Mitra; Dhananjay Pal; Mukul Minocha; Deep Kwatra