Mulatu Geleta
Swedish University of Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mulatu Geleta.
Molecular Ecology Resources | 2010
Hannes Dempewolf; Nolan C. Kane; Katherine L. Ostevik; Mulatu Geleta; Michael S. Barker; Zhao Lai; Megan L. Stewart; Endashaw Bekele; Johannes M. M. Engels; Quentin C. B. Cronk; Loren H. Rieseberg
We present an EST library, chloroplast genome sequence, and nuclear microsatellite markers that were developed for the semi‐domesticated oilseed crop noug (Guizotia abyssinica) from Ethiopia. The EST library consists of 25 711 Sanger reads, assembled into 17 538 contigs and singletons, of which 4781 were functionally annotated using the Arabidopsis Information Resource (TAIR). The age distribution of duplicated genes in the EST library shows evidence of two paleopolyploidizations—a pattern that noug shares with several other species in the Heliantheae tribe (Compositae family). From the EST library, we selected 43 microsatellites and then designed and tested primers for their amplification. The number of microsatellite alleles varied between 2 and 10 (average 4.67), and the average observed and expected heterozygosities were 0.49 and 0.54, respectively. The chloroplast genome was sequenced de novo using Illumina’s sequencing technology and completed with traditional Sanger sequencing. No large re‐arrangements were found between the noug and sunflower chloroplast genomes, but 1.4% of sites have indels and 1.8% show sequence divergence between the two species. We identified 34 tRNAs, 4 rRNA sequences, and 80 coding sequences, including one region (trnH‐psbA) with 15% sequence divergence between noug and sunflower that may be particularly useful for phylogeographic studies in noug and its wild relatives.
Hereditas | 2011
Dickson Ng'uni; Mulatu Geleta; Tomas Bryngelsson
Twenty seven accessions of sorghum conserved in the national gene bank of Zambia, representing two of the three agroecological regions of the country, were investigated using simple sequence repeats (SSR) markers in order to determine the extent and distribution of its genetic diversity. We used 10 microsatellite primer-pairs, which generated 2-9 alleles per locus and a total of 44 alleles across the 27 accessions. The observed heterozygosity (Ho(P) ) among the accessions ranged from 0 to 0.19 with an average of 0.04 whereas the average expected heterozygosity (He(P) ) among accessions was 0.07 in line with the fact that sorghum is predominately inbreeder. The analysis of molecular variance (AMOVA) revealed that 82% of the total genetic variation was attributable to the genetic variation among accessions (F(ST) = 0.824; p < 0.001) whereas the genetic variation within accessions accounted for 18% of the total genetic variation. AMOVA on sorghum accessions grouped based on four ethnic groups (Soli, Chikunda, Lozi and Tonga) associated with collection sites revealed a highly significant variation among groups (23%; p < 0.001). Although cluster analysis grouped most accessions according to their sites of collection, some accessions that originated from the same site were placed under different clusters. In addition to the extent and pattern of genetic diversity, consideration should also be given to other factors such as ecogeographic and ethnic differences when sampling sorghum genetic resources for rational and efficient conservation and utilization in the breeding program.
Genetic Resources and Crop Evolution | 2007
Endashaw Bekele; Mulatu Geleta; Kifle Dagne; Abigail L. Jones; Ian Barnes; Neil Bradman; Mark G. Thomas
Complete sequences for the internal transcribed spacers of the 18s–26s nuclear ribosomal DNA were generated to establish phylogenetic relationships among five species of the genus Guizotia. Parsimony analysis and pairwise distance data produced a single tree with four clearly distinguished clades that accord with previously reported chromosomal data. The clades produced here have been discussed with reference to existing taxonomic treatments. It appears that Guizotia scabra ssp. scabra, G. scabra ssp. schimperi and Guizotia villosa have contributed to the origin of Guizotia abyssinica, the cultivated species of the genus. The present composition of the species of genus Guizotia and the subtribe the genus presently placed in are suggested to be redefined.
Genetic Resources and Crop Evolution | 2007
Mulatu Geleta; Tomas Bryngelsson; Endashaw Bekele; Kifle Dagne
Genetic diversity of 70 populations of niger (Guizotia abyssinica) representing all its growing regions in Ethiopia was investigated using random amplified polymorphic DNA (RAPD) to reveal the extent of its populations genetic diversity. Ninety-seven percent of the loci studied was revealed to be polymorphic for the whole data set. The within population diversity estimated by Shannon diversity index and Nei gene diversity estimates was revealed to be 0.395 and 0.158, respectively. The extent of genetic variation of populations from major niger producing regions was significantly lower than that of populations from other regions; however, it is distributed regardless of altitude of growth. Genetic differentiation between populations was estimated with Shannon index as G′ST (0.432), Nei’s GST (0.242) and AMOVA based FST (0.350) and appears to be equivalent to the average values calculated from various RAPD based studies on outcrossing species. Higher proportion of the variation detected by AMOVA resided within populations (64.58%) relative to the amount of variation among populations (35.42%). UPGMA cluster analysis showed that most of the populations were clustered according to their region of origin. However, some populations were genetically distant from the majority and seem to have unique genetic properties. It is concluded that the crop has a wide genetic basis that may be used for the improvement of the species through conventional breeding and/or marker assisted selection. Collection of germplasm from areas not yet covered and/or underrepresented is the opportunity to broaden the genetic basis of genebank collection.
Annals of Botany | 2012
Waheeb K. Heneen; Mulatu Geleta; Kerstin Brismar; Zhiyong Xiong; J.C. Pires; Robert Hasterok; Andrew I. Stoute; Roderick Scott; Graham J. King; Smita Kurup
BACKGROUND AND AIMS Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. METHODS A new batch of B. rapa-B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snows carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. KEY RESULTS The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.
Hereditas | 2011
Toan Duc Pham; Mulatu Geleta; Tri Minh Bui; Tuyen Cach Bui; Arnulf Merker; Anders S. Carlsson
The purpose of this study was to comparatively analyze the genetic diversity of sesame (Sesamum indicum L.) using agro-morphological and molecular markers. Twelve sesame populations collected from three regions in Cambodia and Vietnam were used in this study. A high genetic variation was revealed both by agro-morphological and RAPD markers within and among the 12 sesame populations. The range of agro-morphological trait based average taxonomic distance among populations (0.02 to 0.47) was wider than that of RAPD based genetic distance (0.06 to 0.27). The mean distance revealed by agro-morphological markers (0.23) and RAPD markers (0.22) was similar. RAPD based analysis revealed a relatively higher genetic diversity in populations from South Vietnam as compared to the other two regions. Interestingly, populations from this region also had higher values for yield related traits such as number of capsules per plant, number of seeds per capsule, and seed yield per plant suggesting positive correlation between the extent of genetic variation within population and yield related traits in sesame. A highly significant positive correlation (r = 0.88, P < 0.001) was found between agro-morphological and RAPD markers in estimating the genetic distance between populations. Both methods suggested the existence of a substantial amount of genetic diversity both in the Vietnamese and Cambodian populations. Although both agro-morphological and RAPD markers were found to be useful in genetic diversity analysis in sesame, their combined use would give superior results.
The Scientific World Journal | 2012
Mulatu Geleta; Isabel Herrera; Arnulfo Monzón; Tomas Bryngelsson
Coffea arabica L. (arabica coffee), the only tetraploid species in the genus Coffea, represents the majority of the worlds coffee production and has a significant contribution to Nicaraguas economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR) markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Neis gene diversity (H T) and the within-population gene diversity (H S) were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA) revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (F ST = 0.13; P < 0.001). The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety.
Annals of Botany | 2010
Dickson Ng'uni; Mulatu Geleta; Moneim Fatih; Tomas Bryngelsson
BACKGROUND AND AIMS Wild Sorghum species provide novel traits for both biotic and abiotic stress resistance and yield for the improvement of cultivated sorghum. A better understanding of the phylogeny in the genus Sorghum will enhance use of the valuable agronomic traits found in wild sorghum. METHODS Four regions of chloroplast DNA (cpDNA; psbZ-trnG, trnY-trnD, trnY-psbM and trnT-trnL) and the internal transcribed spacer (ITS) of nuclear ribosomal DNA were used to analyse the phylogeny of sorghum based on maximum-parsimony analyses. KEY RESULTS Parsimony analyses of the ITS and cpDNA regions as separate or combined sequence datasets formed trees with strong bootstrap support with two lineages: the Eu-sorghum species S. laxiflorum and S. macrospermum in one and Stiposorghum and Para-sorghum in the other. Within Eu-sorghum, S. bicolor-3, -11 and -14 originating from southern Africa form a distinct clade. S. bicolor-2, originally from Yemen, is distantly related to other S. bicolor accessions. CONCLUSIONS Eu-sorghum species are more closely related to S. macrospermum and S. laxiflorum than to any other Australian wild Sorghum species. S. macrospermum and S. laxiflorum are so closely related that it is inappropriate to classify them in separate sections. S. almum is closely associated with S. bicolor, suggesting that the latter is the maternal parent of the former given that cpDNA is maternally inherited in angiosperms. S. bicolor-3, -11 and -14, from southern Africa, are closely related to each other but distantly related to S. bicolor-2.
Theoretical and Applied Genetics | 2012
Mulatu Geleta; Waheeb K. Heneen; Andrew I. Stoute; Nira Muttucumaru; Roderick Scott; Graham J. King; Smita Kurup; Tomas Bryngelsson
Brassica rapa var. trilocularis–B. oleracea var. alboglabra monosomic alien addition lines (MAALs) were used to assign simple sequence repeat (SSR) markers to the nine C-genome chromosomes. A total of 64 SSR markers specific to single C-chromosomes were identified. The number of specific markers for each chromosome varied from two (C3) to ten (C4, C7 and C9), where the designation of the chromosomes was according to Cheng et al. (Genome 38:313–319, 1995). Seventeen additional SSRs, which were duplicated on 2–5 C-chromosomes, were also identified. Using the SSR markers assigned to the previously developed eight MAALs and recently obtained aneuploid plants, a new Brassica rapa–B. oleracea var. alboglabra MAAL carrying the alien chromosome C7 was identified and developed. The application of reported genetically mapped SSR markers on the nine MAALs contributed to the determination of the correspondence between numerical C-genome cytological (Cheng et al. in Genome 38:313–319, 1995) and linkage group designations. This correspondence facilitates the integration of C-genome genetic information that has been generated based on the two designation systems and accordingly increases our knowledge about each chromosome. The present study is a significant contribution to genetic linkage analysis of SSR markers and important agronomic traits in B. oleracea and to the potential use of the MAALs in plant breeding.
Plant Systematics and Evolution | 2010
Mulatu Geleta; Endashaw Bekele; Kifle Dagne; Tomas Bryngelsson
Parsimony-based phylogenetic analyses of the genus Guizotia were undertaken based on DNA sequence data from the following chloroplast DNA (cpDNA) regions: trnT-trnL, trnL-trnF, trnY-rpoB, trnC-petN, psbM-trnD and rps16-trnQ intergenic spacers, trnL, rps16 and matK-5′trnK introns and matK gene. Out of the 26 primers used in this study, 14 were newly designed. The study was conducted to determine (1) the closest relative of Guizotia abyssinica, (2) the taxonomic status of some Guizotia taxa and (3) the subtribal placement of Guizotia in the tribe Heliantheae. The analyses of the sequence data showed that G. abyssinica, G. scabra ssp. scabra, G. scabra ssp. schimperi and G. villosa are phylogenetically closely related. However, G. scabra ssp. schimperi appeared as the most closely related taxon to G. abyssinica. Based on this phylogenetic analysis, we suggest that the two subspecies of G. scabra are better treated as separate species. The analysis also clearly demonstrated that “Chelelu” and “Ketcha” are distinct Guizotia species. The trnT-trnL and trnL-trnF intergenic spacer-based phylogenetic analysis of various subtribes of the tribe Heliantheae strongly supports the placement of the genus Guizotia within the subtribe Milleriinae.