Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muna S. Nahar is active.

Publication


Featured researches published by Muna S. Nahar.


Environmental and Molecular Mutagenesis | 2012

Epigenetic Responses Following Maternal Dietary Exposure to Physiologically Relevant Levels of Bisphenol A

Olivia S. Anderson; Muna S. Nahar; Christopher Faulk; Tamara R. Jones; Chunyang Liao; Kurunthachalam Kannan; Caren Weinhouse; Laura S. Rozek; Dana C. Dolinoy

Animal studies have linked perinatal bisphenol A (BPA) exposure to altered DNA methylation, but little attention is given to analyzing multiple physiologically relevant doses. Utilizing the viable yellow agouti (Avy) mouse, we examine the effects of developmental exposure through maternal diet to 50 ng BPA/kg (n = 14 litters), 50 μg BPA/kg (n = 9 litters), or 50 mg BPA/kg (n = 13 litters) on global and candidate gene methylation at postnatal day 22. Global methylation analysis reveals hypermethylation in tail tissue of a/a and Avy/a offspring across all dose groups compared with controls (n = 11 litters; P < 0.02). Analysis of coat color phenotype replicates previous work showing that the distribution of 50 mg BPA/kg Avy/a offspring shifts toward yellow (P = 0.006) by decreasing DNA methylation in the retrotransposon upstream of the Agouti gene (P = 0.03). Maternal exposure to 50 μg or 50 ng BPA/kg, however, results in altered coat color distributions in comparison with control (P = 0.04 and 0.02), but no DNA methylation effects at the Agouti gene are noted. DNA methylation at the CDK5 activator‐binding protein (CabpIAP) metastable epiallele shows hypermethylation in the 50 μg BPA/kg offspring, compared with controls (P = 0.02). Comparison of exposed mouse liver BPA levels to human fetal liver BPA levels indicates that the three experimental exposures are physiologically relevant. Thus, perinatal BPA exposure affects offspring phenotype and epigenetic regulation across multiple doses, indicating the need to evaluate dose effects in human clinical and population studies. Environ. Mol. Mutagen. 2012.


Journal of Biochemical and Molecular Toxicology | 2013

Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans

Muna S. Nahar; Chunyang Liao; Kurunthachalam Kannan; Dana C. Dolinoy

Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of biotransformation enzymes specific for BPA metabolism in 50 first‐ and second‐trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender‐matched adult liver controls, UDP‐glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β‐glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver.


Chemosphere | 2015

In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus

Muna S. Nahar; Chunyang Liao; Kurunthachalam Kannan; Craig Harris; Dana C. Dolinoy

While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng g(-1)), BPA concentrations were lower in matched placenta (<0.05-25.4 ng g(-1)) and kidney (0.08-11.1 ng g(-1)) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3% and 59.2% in placenta, 79.5% and 66.4% in fetal liver, and 77.9% and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value<0.001) and CCGG content (p-value<0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus.


Environmental Health | 2013

Bisphenol A-associated epigenomic changes in prepubescent girls: a cross-sectional study in Gharbiah, Egypt

Jung Kim; Laura S. Rozek; Amr S. Soliman; Maureen A. Sartor; Ahmed Hablas; Ibrahim A. Seifeldin; Justin A. Colacino; Caren Weinhouse; Muna S. Nahar; Dana C. Dolinoy

BackgroundThere is now compelling evidence that epigenetic modifications link adult disease susceptibility to environmental exposures during specific life stages, including pre-pubertal development. Animal studies indicate that bisphenol A (BPA), the monomer used in epoxy resins and polycarbonate plastics, may impact health through epigenetic mechanisms, and epidemiological data associate BPA levels with metabolic disorders, behavior changes, and reproductive effects. Thus, we conducted an environmental epidemiology study of BPA exposure and CpG methylation in pre-adolescent girls from Gharbiah, Egypt hypothesizing that methylation profiles exhibit exposure-dependent trends.MethodsUrinary concentrations of total (free plus conjugated) species of BPA in spot samples were quantified for 60 girls aged 10 to 13. Genome-wide CpG methylation was concurrently measured in bisulfite-converted saliva DNA using the Infinium HumanMethylation27 BeadChip (N = 46). CpG sites from four candidate genes were validated via quantitative bisulfite pyrosequencing.ResultsCpG methylation varied widely among girls, and higher urinary BPA concentrations were generally associated with less genomic methylation. Based on pathway analyses, genes exhibiting reduced methylation with increasing urinary BPA were involved in immune function, transport activity, metabolism, and caspase activity. In particular, hypomethylation of CpG targets on chromosome X was associated with higher urinary BPA. Using the Comparative Toxicogenomics Database, we identified a number of candidate genes in our sample that previously have been associated with BPA-related expression change.ConclusionsThese data indicate that BPA may affect human health through specific epigenomic modification of genes in relevant pathways. Thus, epigenetic epidemiology holds promise for the identification of biomarkers from previous exposures and the development of epigenetic-based diagnostic strategies.


Environmental Health | 2012

Urinary bisphenol A concentrations in girls from rural and urban Egypt: a pilot study

Muna S. Nahar; Amr S. Soliman; Justin A. Colacino; Antonia M. Calafat; Kristen Battige; Ahmed Hablas; Ibrahim A. Seifeldin; Dana C. Dolinoy; Laura S. Rozek

BackgroundExposure to endocrine active compounds, including bisphenol A (BPA), remains poorly characterized in developing countries despite the fact that behavioral practices related to westernization have the potential to influence exposure. BPA is a high production volume chemical that has been associated with metabolic dysfunction as well as behavioral and developmental effects in people, including children. In this pilot study, we evaluate BPA exposure and assess likely pathways of exposure among girls from urban and rural Egypt.MethodsWe measured urinary concentrations of total (free plus conjugated) species of BPA in spot samples in urban (N = 30) and rural (N = 30) Egyptian girls, and compared these concentrations to preexisting data from age-matched American girls (N = 47) from the U.S. National Health and Nutrition Examination Survey (NHANES). We also collected anthropometric and questionnaire data regarding food storage behaviors to assess potential routes of exposure.ResultsUrban and rural Egyptian girls exhibited similar concentrations of urinary total BPA, with median unadjusted values of 1.00 and 0.60 ng/mL, respectively. Concentrations of urinary BPA in this group of Egyptian girls (median unadjusted: 0.70 ng/mL) were significantly lower compared to age-matched American girls (median unadjusted: 2.60 ng/mL) according to NHANES 2009-2010 data. Reported storage of food in plastic containers was a significant predictor of increasing concentrations of urinary BPA.ConclusionsDespite the relatively low urinary BPA concentrations within this Egyptian cohort, the significant association between food storage behaviors and increasing urinary BPA concentration highlights the need to understand food and consumer product patterns that may be closing the gap between urban and rural lifestyles.


Epigenetics | 2011

An expression microarray approach for the identification of metastable epialleles in the mouse genome.

Caren Weinhouse; Olivia S. Anderson; Tamara R. Jones; Jung Kim; Shayna A. Liberman; Muna S. Nahar; Laura S. Rozek; Randy L. Jirtle; Dana C. Dolinoy

Genetic loci displaying environmentally responsive epigenetic marks, termed metastable epialleles, offer a solution to the paradox presented by genetically identical yet phenotypically distinct individuals. The murine viable yellow agouti (Avy) metastable epiallele exhibits stochastic DNA methylation and histone modifications associated with coat color variation in isogenic individuals. The distribution of Avy variable expressivity shifts following maternal nutritional and environmental exposures. To characterize additional murine metastable epialleles, we utilized genome-wide expression arrays (N = 10 male individuals, 3 tissues per individual) and identified candidates displaying large variability in gene expression among individuals (Vi = inter-individual variance), concomitant with a low variability in gene expression across tissues from the three germ layers (Vt = inter-tissue variance), two features characteristic of the Avy metastable epiallele. The CpG island in the promoter of Dnajb1 and two contraoriented ERV class II repeats in Glcci1 were validated to display underlying stochasticity in methylation patterns common to metastable epialleles. Furthermore, liver DNA methylation in mice exposed in utero to 50 mg bisphenol A (BPA)/kg diet (N = 91) or a control diet (N = 79) confirmed environmental lability at validated candidate genes. Significant effects of exposure on mean CpG methylation were observed at the Glcci1 Repeat 1 locus (p < 0.0001). Significant effects of BPA also were observed at the first and fifth CpG sites studied in Glcci1 Repeat 2 (p < 0.0001 and p = 0.004, respectively). BPA did not affect methylation in the promoter of Dnajb1 (p = 0.59). The characterization of metastable epialleles in humans is crucial for the development of novel screening and therapeutic targets for human disease prevention.


Environmental and Molecular Mutagenesis | 2014

Bisphenol A-associated alterations in the expression and epigenetic regulation of genes encoding xenobiotic metabolizing enzymes in human fetal liver

Muna S. Nahar; Jung Kim; Maureen A. Sartor; Dana C. Dolinoy

Alterations in xenobiotic metabolizing enzyme (XME) expression across the life course, along with genetic, nutritional, and environmental regulation, can influence how organisms respond to toxic insults. In this study, we investigated the hypothesis that in utero exposure to the endocrine active compound, bisphenol A (BPA), influences expression and epigenetic regulation of phase I and II XME genes during development. Using healthy 1st to 2nd trimester human fetal liver specimens quantified for internal BPA levels, we examined XME gene expression using PCR Array (n = 8) and RNA‐sequencing (n = 12) platforms. Of the greater than 160 XME genes assayed, 2 phase I and 12 phase II genes exhibited significantly reduced expression with higher BPA levels, including isoforms from the carboxylesterase, catechol O‐methyltransferase, glutathione S‐transferase, sulfotransferase, and UDP‐glucuronosyltransferase families. When the promoters of these candidate genes were evaluated in silico, putative binding sites for the E‐twenty‐six (ETS) and activator protein1 (AP1) related transcription factor families were identified and unique to 97% of all candidate transcripts. Interestingly, many ETS binding sites contain cytosine‐guanine dinucleotides (CpGs) within their consensus sequences. Thus, quantitative analysis of CpG methylation of three candidate genes was conducted across n = 50 samples. Higher BPA levels were associated with increased site‐specific methylation at COMT (P < 0.005) and increased average methylation at SULT2A1 (P < 0.020) promoters. While toxicological studies have traditionally focused on high‐dose effects and hormonal receptor mediated regulation, our findings suggest the importance of low‐dose effects and nonclassical mechanisms of endocrine disruption during development. Environ. Mol. Mutagen. 55:184–195, 2014.


Environmental Health | 2011

Exposure to phthalates among premenstrual girls from rural and urban Gharbiah, Egypt: A pilot exposure assessment study

Justin A. Colacino; Amr S. Soliman; Antonia M. Calafat; Muna S. Nahar; Adrienne Van Zomeren-Dohm; Ahmed Hablas; Ibrahim A. Seifeldin; Laura S. Rozek; Dana C. Dolinoy

BackgroundPhthalates have been identified as endocrine active compounds associated with developmental and reproductive toxicity. The exposure to phthalates in premenstrual Egyptian females remains unknown. The objective of this study was to characterize phthalate exposure of a potentially vulnerable population of premenstrual girls from urban and rural Egypt.Materials and methodsWe collected one spot urine sample from 60 10-13 year old females, 30 from rural Egypt, and 30 from urban Egypt from July to October 2009. Samples were analyzed for 11 phthalate metabolites. Additionally, we collected anthropometrics as well as questionnaire data concerning food storage behaviors, cooking practices, and cosmetic use. Phthalate metabolite concentrations were compared between urban and rural Egyptians as well as to age and gender matched Americans.ResultsMonoethyl phthalate (MEP), was detected at the highest concentration in urine of Egyptian girls (median: 43.2 ng/mL in rural, 98.8 ng/mL in urban). Concentrations of urinary metabolites of di-(2-ethylhexyl) phthalate and dibutyl phthalate were comparable between Egyptians and age matched US girls. Storage of food in plastic containers was a statistically significant predictor of urinary mono-isobutyl phthalate (MiBP) concentrations when comparing covariate adjusted means.ConclusionsUrinary concentrations of phthalate metabolites were similar in Egyptian and US populations, suggesting that phthalate exposure also occurs in developing nations. Dietary intake is likely an important route of exposure to phthalates in both urban and rural populations.


Clinical Epigenetics | 2012

Delivery type not associated with global methylation at birth

Shama Virani; Dana C. Dolinoy; Sindhu Halubai; Tamara R. Jones; Steve E Domino; Laura S. Rozek; Muna S. Nahar; Vasantha Padmanabhan

BackgroundBirth by cesarean delivery (CD) as opposed to vaginal delivery (VD) is associated with altered health outcomes later in life, including respiratory disorders, allergies and risk of developing type I diabetes. Epigenetic gene regulation is a proposed mechanism by which early life exposures affect later health outcomes. Previously, type of delivery has been found to be associated with differences in global methylation levels, but the sample sizes have been small. We measured global methylation in a large birth cohort to identify whether type of delivery is associated with epigenetic changes.MethodsDNA was isolated from cord blood collected from the University of Michigan Women’s & Children Hospital and bisulfite-converted. The Luminometric Methylation Assay (LUMA) and LINE-1 methylation assay were run on all samples in duplicate.ResultsGlobal methylation data at CCGG sites throughout the genome, as measured by LUMA, were available from 392 births (52% male; 65% CD), and quantitative methylation levels at LINE-1 repetitive elements were available for 407 births (52% male; 64% CD). LUMA and LINE-1 methylation measurements were negatively correlated in this population (Spearman’s r = −0.13, p =0.01). LUMA measurements were significantly lower for total CD and planned CD, but not emergency CD when compared to VD (median VD = 74.8, median total CD = 74.4, p = 0.03; median planned CD = 74.2, p = 0.02; median emergency CD = 75.3, p = 0.39). However, this association did not persist when adjusting for maternal age, maternal smoking and infant gender. Furthermore, total CD deliveries, planned CD and emergency CD deliveries were not associated with LINE-1 measurements as compared to VD (median VD = 82.2, median total CD = 81.9, p = 0.19; median planned CD = 81.9, p = 0.19; median emergency CD = 82.1, p = 0.52). This lack of association held when adjusting for maternal age, maternal smoking and infant gender in a multivariable model.ConclusionsType of delivery was not associated with global methylation in our population, even after adjustment for maternal age, maternal smoking, and infant gender. While type of birth may be associated with later health outcomes, our data suggest that it does not do so through changes in global genomic methylation.


Epigenetics | 2016

Detection of differential DNA methylation in repetitive DNA of mice and humans perinatally exposed to bisphenol A

Christopher Faulk; Jung Kim; Olivia S. Anderson; Muna S. Nahar; Tamara R. Jones; Maureen A. Sartor; Dana C. Dolinoy

ABSTRACT Developmental exposure to bisphenol A (BPA) has been shown to induce changes in DNA methylation in both mouse and human genic regions; however, the response in repetitive elements and transposons has not been explored. Here we present novel methodology to combine genomic DNA enrichment with RepeatMasker analysis on next-generation sequencing data to determine the effect of perinatal BPA exposure on repetitive DNA at the class, family, subfamily, and individual insertion level in both mouse and human samples. Mice were treated during gestation and lactation to BPA in chow at 0, 50, or 50,000 ng/g levels and total BPA was measured in stratified human fetal liver tissue samples as low (non-detect to 0.83 ng/g), medium (3.5 to 5.79 ng/g), or high (35.44 to 96.76 ng/g). Transposon methylation changes were evident in human classes, families, and subfamilies, with the medium group exhibiting hypomethylation compared to both high and low BPA groups. Mouse repeat classes, families, and subfamilies did not respond to BPA with significantly detectable differential DNA methylation. In human samples, 1251 individual transposon loci were detected as differentially methylated by BPA exposure, but only 19 were detected in mice. Of note, this approach recapitulated the discovery of a previously known mouse environmentally labile metastable epiallele, CabpIAP. Thus, by querying repetitive DNA in both mouse and humans, we report the first known transposons in humans that respond to perinatal BPA exposure.

Collaboration


Dive into the Muna S. Nahar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung Kim

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amr S. Soliman

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge