Munehide Nakatsugawa
Princess Margaret Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Munehide Nakatsugawa.
Journal of Clinical Investigation | 2016
Yuki Kagoya; Munehide Nakatsugawa; Yuki Yamashita; Toshiki Ochi; Tingxi Guo; Mark Anczurowski; Kayoko Saso; Marcus O. Butler; C.H. Arrowsmith; Naoto Hirano
Adoptive immunotherapy is a potentially curative therapeutic approach for patients with advanced cancer. However, the in vitro expansion of antitumor T cells prior to infusion inevitably incurs differentiation towards effector T cells and impairs persistence following adoptive transfer. Epigenetic profiles regulate gene expression of key transcription factors over the course of immune cell differentiation, proliferation, and function. Using comprehensive screening of chemical probes with defined epigenetic targets, we found that JQ1, an inhibitor of bromodomain and extra-terminal motif (BET) proteins, maintained CD8+ T cells with functional properties of stem cell-like and central memory T cells. Mechanistically, the BET protein BRD4 directly regulated expression of the transcription factor BATF in CD8+ T cells, which was associated with differentiation of T cells into an effector memory phenotype. JQ1-treated T cells showed enhanced persistence and antitumor effects in murine T cell receptor and chimeric antigen receptor gene therapy models. Furthermore, we found that histone acetyltransferase p300 supported the recruitment of BRD4 to the BATF promoter region, and p300 inhibition similarly augmented antitumor effects of the adoptively transferred T cells. These results demonstrate that targeting the BRD4-p300 signaling cascade supports the generation of superior antitumor T cell grafts for adoptive immunotherapy.
Journal of Immunology | 2015
Munehide Nakatsugawa; Yuki Yamashita; Toshiki Ochi; Shinya Tanaka; Kenji Chamoto; Tingxi Guo; Marcus O. Butler; Naoto Hirano
TCRα- and β-chains cooperatively recognize peptide–MHC complexes. It has been shown that a “chain-centric” TCR hemichain can, by itself, dictate MHC-restricted Ag specificity without requiring major contributions from the paired TCR counterchain. Little is known, however, regarding the relative contributions and roles of chain-centric and its counter, non–chain-centric, hemichains in determining T cell avidity. We comprehensively analyzed a thymically unselected T cell repertoire generated by transducing the α-chain–centric HLA-A*02:01(A2)/MART127–35 TCRα, clone SIG35α, into A2-matched and unmatched postthymic T cells. Regardless of their HLA-A2 positivity, a substantial subset of peripheral T cells transduced with SIG35α gained reactivity for A2/MART127–35. Although the generated A2/MART127–35–specific T cells used various TRBV genes, TRBV27 predominated with >102 highly diverse and unique clonotypic CDR3β sequences. T cells individually reconstituted with various A2/MART127–35 TRBV27 TCRβ genes along with SIG35α possessed a wide range (>2 log orders) of avidity. Approximately half possessed avidity higher than T cells expressing clone DMF5, a naturally occurring A2/MART127–35 TCR with one of the highest affinities. Importantly, similar findings were recapitulated with other self-Ags. Our results indicate that, although a chain-centric TCR hemichain determines Ag specificity, the paired counterchain can regulate avidity over a broad range (>2 log orders) without compromising Ag specificity. TCR chain centricity can be exploited to generate a thymically unselected Ag-specific T cell repertoire, which can be used to isolate high-avidity antitumor T cells and their uniquely encoded TCRs rarely found in the periphery because of tolerance.
JCI insight | 2017
Yuki Kagoya; Munehide Nakatsugawa; Toshiki Ochi; Yuchen Cen; Tingxi Guo; Mark Anczurowski; Kayoko Saso; Marcus O. Butler; Naoto Hirano
Adoptive cell therapy is a potentially curative therapeutic approach for patients with cancer. In this treatment modality, antitumor T cells are exponentially expanded in vitro prior to infusion. Importantly, the results of recent clinical trials suggest that the quality of expanded T cells critically affects their therapeutic efficacy. Although anti-CD3 mAb-based stimulation is widely used to expand T cells in vitro, a protocol to generate T cell grafts for optimal adoptive therapy has yet to be established. In this study, we investigated the differences between T cell stimulation mediated by anti-CD3/CD28 mAb-coated beads and cell-based artificial antigen-presenting cells (aAPCs) expressing CD3/CD28 counter-receptors. We found that transient stimulation with cell-based aAPCs, but not prolonged stimulation with beads, resulted in the superior expansion of CD8+ T cells. Transiently stimulated CD8+ T cells maintained a stem cell-like memory phenotype and were capable of secreting multiple cytokines significantly more efficiently than chronically stimulated T cells. Importantly, the chimeric antigen receptor-engineered antitumor CD8+ T cells expanded via transient stimulation demonstrated superior persistence and antitumor responses in adoptive immunotherapy mouse models. These results suggest that restrained stimulation is critical for generating T cell grafts for optimal adoptive immunotherapy for cancer.
Cancer immunology research | 2015
Toshiki Ochi; Munehide Nakatsugawa; Kenji Chamoto; Shinya Tanaka; Yuki Yamashita; Tingxi Guo; Hiroshi Fujiwara; Masaki Yasukawa; Marcus O. Butler; Naoto Hirano
Adoptive transfer of redirected antitumor T cells can have off-target toxicities. Peptide-MHC specificity can be focused on a single TCR chain, allowing the authors to separate antitumor-reactivity from cross-reactivity, while showing that monitoring for toxicities is still necessary. Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1235–243 (A24/WT1235) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1235 and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs. Cancer Immunol Res; 3(9); 1070–81. ©2015 AACR.
Nature Communications | 2017
Yuki Yamashita; Mark Anczurowski; Munehide Nakatsugawa; Makito Tanaka; Yuki Kagoya; Ankit Sinha; Kenji Chamoto; Toshiki Ochi; Tingxi Guo; Kayoko Saso; Marcus O. Butler; Mark D. Minden; Thomas Kislinger; Naoto Hirano
Classical antigen processing leads to the presentation of antigenic peptides derived from endogenous and exogenous sources for MHC class I and class II molecules, respectively. Here we show that, unlike other class II molecules, prevalent HLA-DP molecules with β-chains encoding Gly84 (DP84Gly) constitutively present endogenous peptides. DP84Gly does not bind invariant chain (Ii) via the class II-associated invariant chain peptide (CLIP) region, nor does it present CLIP. However, Ii does facilitate the transport of DP84Gly from the endoplasmic reticulum (ER) to the endosomal/lysosomal pathway by transiently binding DP84Gly via a non-CLIP region(s) in a pH-sensitive manner. Accordingly, like class I, DP84Gly constitutively presents endogenous peptides processed by the proteasome and transported to the ER by the transporter associated with antigen processing (TAP). Therefore, DP84Gly, found only in common chimpanzees and humans, uniquely uses both class I and II antigen-processing pathways to present peptides derived from intracellular and extracellular sources.
Journal of Autoimmunity | 2016
Kenji Chamoto; Tingxi Guo; Osamu Imataki; Makito Tanaka; Munehide Nakatsugawa; Toshiki Ochi; Yuki Yamashita; Akiko M. Saito; Toshiki I. Saito; Marcus O. Butler; Naoto Hirano
Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease.
Scientific Reports | 2016
Munehide Nakatsugawa; Muhammed A. Rahman; Yuki Yamashita; Toshiki Ochi; Piotr Wnuk; Shinya Tanaka; Kenji Chamoto; Yuki Kagoya; Kayoko Saso; Tingxi Guo; Mark Anczurowski; Marcus O. Butler; Naoto Hirano
Recent high throughput sequencing analysis has revealed that the TCRβ repertoire is largely different between CD8+ and CD4+ T cells. Here, we show that the transduction of SIG35α, the public chain-centric HLA-A*02:01(A2)/MART127–35 TCRα hemichain, conferred A2/MART127–35 reactivity to a substantial subset of both CD8+ and CD4+ T cells regardless of their HLA–A2 positivity. T cells individually reconstituted with SIG35α and different A2/MART127–35 TCRβ genes isolated from CD4+ or CD8+ T cells exhibited a wide range of avidity. Surprisingly, approximately half of the A2/MART127–35 TCRs derived from CD4+ T cells, but none from CD8+ T cells, were stained by A2/MART127–35 monomer and possessed broader cross-reactivity. Our results suggest that the differences in the primary structure of peripheral CD4+ and CD8+ TCRβ repertoire indeed result in the differences in their ability to form extraordinarily high avidity T cells which would otherwise have been deleted by central tolerance.
PLOS ONE | 2016
Tingxi Guo; Kenji Chamoto; Munehide Nakatsugawa; Toshiki Ochi; Yuki Yamashita; Mark Anczurowski; Marcus O. Butler; Naoto Hirano
Invariant natural killer T (iNKT) cells recognize self-lipids presented by CD1d through characteristic TCRs, which mainly consist of the invariant Vα14-Jα18 TCRα chain and Vβ8.2, 7 or 2 TCRβ chains with hypervariable CDR3β sequences in mice. The iNKT cell-CD1d axis is conserved between humans and mice, and human CD1d reactivity of murine iNKT cells have been described. However, the detailed differences between the recognition of human and mouse CD1d bound to various self-lipids by mouse iNKT TCRs are largely unknown. In this study, we generated a de novo murine iNKT TCR repertoire with a wider range of autoreactivity compared with that of naturally occurring peripheral iNKT TCRs. Vβ8.2 mouse iNKT TCRs capable of recognizing the human CD1d-self-lipid tetramer were identified, although such clones were not detectable in the Vβ7 or Vβ2 iNKT TCR repertoire. In line with previously reports, clonotypic Vβ8.2 iNKT TCRs with unique CDR3β loops did not discriminate among lipids presented by mouse CD1d. Unexpectedly, however, these iNKT TCRs showed greater ligand selectivity toward human CD1d presenting the same lipids. Our findings demonstrated that the recognition of mouse and human CD1d-self-lipid complexes by murine iNKT TCRs is not conserved, thereby further elucidating the differences between cognate and cross-species reactivity of self-antigens by mouse iNKT TCRs.
Journal of Visualized Experiments | 2016
Tingxi Guo; Toshiki Ochi; Munehide Nakatsugawa; Yuki Kagoya; Mark Anczurowski; Chung-Hsi Wang; Muhammed A. Rahman; Kayoko Saso; Marcus O. Butler; Naoto Hirano
T cell receptors (TCRs) are used clinically to direct the specificity of T cells to target tumors as a promising modality of immunotherapy. Therefore, cloning TCRs specific for various tumor-associated antigens has been the goal of many studies. To elicit an effective T cell response, the TCR must recognize the target antigen with optimal affinity. However, cloning such TCRs has been a challenge and many available TCRs possess sub-optimal affinity for the cognate antigen. In this protocol, we describe a method of cloning de novo high affinity antigen-specific TCRs using existing TCRs by exploiting hemichain centricity. It is known that for some TCRs, each TCRα or TCRβ hemichain do not contribute equally to antigen recognition, and the dominant hemichain is referred to as the centric hemichain. We have shown that by pairing the centric hemichain with counter-chains differing from the original counter-chain, we are able to maintain the antigen specificity, while modulating its interaction strength for the cognate antigen. Thus, the therapeutic potential of a given TCR can be improved by optimizing the pairing between the centric and counter hemichains.
Scientific Reports | 2018
Mark Anczurowski; Yuki Yamashita; Munehide Nakatsugawa; Toshiki Ochi; Yuki Kagoya; Tingxi Guo; Chung-Hsi Wang; Muhammed A. Rahman; Kayoko Saso; Marcus O. Butler; Naoto Hirano
While the principles of classical antigen presentation via MHC class II are well-established, the mechanisms for the many routes of cross-presentation by which endogenous antigens become associated with class II molecules are not fully understood. We have recently demonstrated that the single amino acid polymorphism HLA-DPβ84Gly (DP84Gly) is critical to abrogate class II invariant chain associated peptide (CLIP) region-mediated binding of invariant chain (Ii) to DP, allowing endoplasmic reticulum (ER)-resident endogenous antigens to constitutively associate with DP84Gly such as DP4. In this study, we demonstrate that both the CLIP and N-terminal non-CLIP Ii regions cooperatively generate an Ii conformation that cannot associate with DP84Gly via the CLIP region. We also demonstrate the ability of DP4 to efficiently process and present antigens encoded in place of CLIP in a chimeric Ii, regardless of wild type Ii and HLA-DM expression. These data highlight the complex interplay between DP polymorphisms and the multiple Ii regions that cooperatively regulate this association, ultimately controlling the presentation of endogenous antigens on DP molecules. These results may also offer a mechanistic explanation for recent studies identifying the differential effects between DP84Gly and DP84Asp as clinically relevant in human disease.