Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muneteru Sasaki is active.

Publication


Featured researches published by Muneteru Sasaki.


Bone | 2011

Eldecalcitol, a second-generation vitamin D analog, drives bone minimodeling and reduces osteoclastic number in trabecular bone of ovariectomized rats

Paulo Henrique Luiz de Freitas; Tomoka Hasegawa; Satoshi Takeda; Muneteru Sasaki; Chihiro Tabata; Kimimitsu Oda; Minqi Li; Hitoshi Saito; Norio Amizuka

To elucidate the histological events that follow administration of eldecalcitol, a second-generation of vitamin D analog currently awaiting approval as a drug for treatment of osteoporosis, we employed the ovariectomy (OVX) rat model. OVX rats received vehicle or 30ng/kg of eldecalcitol, and sham-operated animals received vehicle only. Rats were sacrificed after 12weeks and had their femora and tibiae removed and processed for histochemical and histomorphometrical analyses. When compared with OVX group, osteoclastic number and bone resorption parameters were significantly reduced in eldecalcitol-treated rats, accompanied by decreased bone formation parameters. The preosteoblastic layer, with which osteoclastic precursors interact for mutual differentiation, was poorly developed in the eldecalcitol group, indicating less cell-to-cell contact between preosteoblasts and osteoclast precursors. Interestingly, eldecalcitol did promote a type of focal bone formation that is independent of bone resorption, a process known as bone minimodeling. While the number of ED-1-positive macrophages was higher in the bone marrow of treated rats, though osteoclastic number was deceased. Taken together, our findings suggest that eldecalcitol stimulates preosteoblastic differentiation rather than their proliferation, which in turn may prevent or diminish cell-to-cell contact between preosteoblasts and osteoclastic precursors, and therefore, lead to lower osteoclast numbers and decreased bone resorption.


Bone | 2013

Altered distribution of bone matrix proteins and defective bone mineralization in klotho-deficient mice

Muneteru Sasaki; Tomoka Hasegawa; Tamaki Yamada; Hiromi Hongo; Paulo Henrique Luiz de Freitas; Reiko Suzuki; Tomomaya Yamamoto; Chihiro Tabata; Satoru Toyosawa; Tsuneyuki Yamamoto; Kimimitsu Oda; Minqi Li; Nobuo Inoue; Norio Amizuka

In an attempt to identify the histological properties of the klotho-deficient (kl/kl) bone matrix, bone mineralization and the localization of Ca(2+)-binding bone matrix proteins - osteocalcin, dentin matrix protein-1 (DMP-1) and matrix Gla protein (MGP) - were examined in kl/kl tibiae. While a widespread osteocalcin staining could be verified in the wild-type bone matrix, localization of the same protein in the kl/kl tibiae seemed rather restricted to osteocytes with only a faint staining of the whole bone matrix. In wild-type mice, MGP immunoreactivity was present at the junction between the epiphyseal bone and cartilage, and at the insertion of the cruciate ligaments. In kl/kl mice, however, MGP was seen around the cartilaginous cores of the metaphyseal trabeculae and in the periphery of some cells of the bone surface. DMP-1 was identified in the osteocytic canalicular system of wild-type tibiae, but in the kl/kl tibiae this protein was mostly found in the osteocytic lacunae and in the periphery of some cells of the bone surface. Mineralization of the kl/kl bone seemed somewhat defective, with broad unmineralized areas within its matrix. In these areas, mineralized osteocytes along with their lacunae and osteocytic cytoplasmic processes were found to have intense osteocalcin and DMP-1 staining. Taken together, it might be that the excessive production of Ca(2+)-binding molecules such as osteocalcin and DMP-1 by osteocytes concentrates mineralization around such cells, disturbing the completeness of mineralization in the kl/kl bone matrix.


Journal of Bone and Mineral Metabolism | 2015

Inhibitory effect of bisphosphonate on osteoclast function contributes to improved skeletal pain in ovariectomized mice

Yasuhisa Abe; Kousuke Iba; Koichi Sasaki; Hironori Chiba; Kumiko Kanaya; Tomoyuki Kawamata; Kimimitsu Oda; Norio Amizuka; Muneteru Sasaki; Toshihiko Yamashita

The aim of this study was to evaluate skeletal pain associated with osteoporosis and to examine the inhibitory effect of bisphosphonate (BP) on pain in an ovariectomized (OVX) mouse model. We evaluated skeletal pain in OVX mice through an examination of pain-like behavior as well as immunohistochemical findings. In addition, we assessed the effects of alendronate (ALN), a potent osteoclast inhibitor, on those parameters. The OVX mice showed a decrease in the pain threshold value, and an increase in the number of c-Fos immunoreactive neurons in laminae I–II of the dorsal horn of the spinal cord. Alendronate caused an increase in the pain threshold value and inhibited c-Fos expression. The serum level of tartrate-resistant acid phosphatase 5b, a marker of osteoclast activity, was significantly negatively correlated with the pain threshold value. Furthermore, we found that an antagonist of the transient receptor potential channel vanilloid subfamily member 1, which is an acid-sensing nociceptor, improved pain-like behavior in OVX mice. These results indicated that the inhibitory effect of BP on osteoclast function might contribute to an improvement in skeletal pain in osteoporosis patients.


Histology and Histopathology | 2013

Histological examination on osteoblastic activities in the alveolar bone of transgenic mice with induced ablation of osteocytes

Minqi Li; Tomoka Hasegawa; Hiromi Hogo; Sawako Tatsumi; Zhusheng Liu; Ying Guo; Muneteru Sasaki; Chihiro Tabata; Tsuneyuki Yamamoto; Kyoji Ikeda; Norio Amizuka

The purpose of this study was to examine histological alterations on osteoblasts from the alveolar bone of transgenic mice with targeted ablation of osteoctyes. Eighteen weeks-old transgenic mice based on the diphtheria toxin (DT) receptor-mediated cell knockout (TRECK) system were used in these experiments. Mice were injected intraperitoneally with 50 µg/kg of DT in PBS, or only PBS as control. Two weeks after injections, mice were subjected to transcardiac perfusion with 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4), and the available alveolar bone was removed for histochemical analyses. Approximately 75% of osteocytes from alveolar bones became apoptotic after DT administration, and most osteocytic lacunae became empty. Osteoblastic numbers and alkaline phosphatase (ALP) activity were markedly reduced at the endosteum of alveolar bone after DT administration compared with the control. Osteoblastic ALP activity in the periodontal ligament region, on the other hand, hardly showed any differences between the two groups even though numbers were reduced in the experiment group. Silver impregnation showed a difference in the distribution of bone canaliculi between the portions near the endosteum and the periodontal ligament: the former appeared regularly arranged in contrast to the latters irregular distribution. Under transmission electron microscopy (TEM), the osteoblasts in the periodontal ligament showed direct contact with the Sharpeys fibers. Thus, osteoblastic activity was affected by osteocyte ablation in general, but osteoblasts in contact with the periodontal ligament were less affected than endosteal osteoblasts.


Journal of Electron Microscopy | 2012

Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone

Tsuneyuki Yamamoto; Tomoka Hasegawa; Muneteru Sasaki; Hiromi Hongo; Chihiro Tabata; Zhusheng Liu; Minqi Li; Norio Amizuka

This study was designed to elucidate details of the structure and formation process of the alternate lamellar pattern known to exist in lamellar bone. For this purpose, we examined basic internal lamellae in femurs of young rats by transmission and scanning electron microscopy, the latter employing two different macerations with NaOH at concentrations of 10 and 24%. Observations after the maceration with 10% NaOH showed that the regular and periodic rotation of collagen fibrils caused an alternation between two types of lamellae: one consisting of transversely and nearly transversely cut fibrils, and the other consisting of longitudinally and nearly longitudinally cut fibrils. This finding confirms the consistency of the twisted plywood model. The maceration method with 24% NaOH removed bone components other than cells, thus allowing for three-dimensional observations of osteoblast morphology. Osteoblasts extended finger-like processes paralleling the inner bone surface, and grouped in such a way that, within a group, the processes arranged in a similar direction. Transmission electron microscopy showed that newly deposited fibrils were arranged alongside these processes. For the formation of the alternating pattern, our findings suggest that: (1) osteoblasts control the collagen fibril arrangement through their finger-like process position; (2) osteoblasts behave similarly within a group; (3) osteoblasts move their processes synchronously and periodically to promote alternating different fibril orientation; and (4) this dynamic sequential deposition of fibrils results in the alternate lamellar (or twisted plywood) pattern.


Endocrinology | 2016

Frequency of Teriparatide Administration Affects the Histological Pattern of Bone Formation in Young Adult Male Mice

Tomomaya Yamamoto; Tomoka Hasegawa; Muneteru Sasaki; Hiromi Hongo; Kanako Tsuboi; Tomohiro Shimizu; Masahiro Ota; Mai Haraguchi; Masahiko Takahata; Kimimitsu Oda; Paulo Henrique Luiz de Freitas; Aya Takakura; Ryoko Takao-Kawabata; Yukihiro Isogai; Norio Amizuka

Evidence supports that daily and once-weekly administration of teriparatide, human (h)PTH(1-34), enhance bone mass in osteoporotic patients. However, it is uncertain whether different frequencies of hPTH(1-34) administration would induce bone formation similarly in terms of quantity and quality. To investigate that issue, mice were subjected to different frequencies of PTH administration, and their bones were histologically examined. Frequencies of administration were 1 time/2 days, 1 time a day, and 2 and 4 times a day. Mice were allocated to either to control or to 3 different dosing regimens: 80 μg/kg of hPTH(1-34) per injection (80 μg/kg per dose), 80 μg/kg of hPTH(1-34) per day (80 μg/kg · d), or 20 μg/kg of hPTH(1-34) per day (20 μg/kg · d). With the regimens of 80 μg/kg per dose and 80 μg/kg · d, high-frequency hPTH(1-34) administration increased metaphyseal trabecular number. However, 4 doses per day induced the formation of thin trabeculae, whereas the daily PTH regimen resulted in thicker trabeculae. A similar pattern was observed with the lower daily hPTH(1-34) dose (20 μg/kg · d): more frequent PTH administration led to the formation of thin trabeculae, showing a thick preosteoblastic cell layer, several osteoclasts, and scalloped cement lines that indicated accelerated bone remodeling. On the other hand, low-frequency PTH administration induced new bone with mature osteoblasts lying on mildly convex surfaces representative of arrest lines, which suggests minimodeling-based bone formation. Thus, high-frequency PTH administration seems to increase bone mass rapidly by forming thin trabeculae through accelerated bone remodeling. Alternatively, low-frequency PTH administration leads to the formation of thicker trabeculae through bone remodeling and minimodeling.


Acta Biomaterialia | 2017

Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading

Shinichiro Kuroshima; Takayoshi Nakano; Takuya Ishimoto; Muneteru Sasaki; Maaya Inoue; Munenori Yasutake; Takashi Sawase

The aim was to investigate the effect of groove designs on bone quality under controlled-repetitive load conditions for optimizing dental implant design. Anodized Ti-6Al-4V alloy implants with -60° and +60° grooves around the neck were placed in the proximal tibial metaphysis of rabbits. The application of a repetitive mechanical load was initiated via the implants (50N, 3Hz, 1800 cycles, 2days/week) at 12weeks after surgery for 8weeks. Bone quality, defined as osteocyte density and degree of biological apatite (BAp) c-axis/collagen fibers, was then evaluated. Groove designs did not affect bone quality without mechanical loading; however, repetitive mechanical loading significantly increased bone-to-implant contact, bone mass, and bone mineral density (BMD). In +60° grooves, the BAp c-axis/collagen fibers preferentially aligned along the groove direction with mechanical loading. Moreover, osteocyte density was significantly higher both inside and in the adjacent region of the +60° grooves, but not -60° grooves. These results suggest that the +60° grooves successfully transmitted the load to the bone tissues surrounding implants through the grooves. An optimally oriented groove structure on the implant surface was shown to be a promising way for achieving bone tissue with appropriate bone quality. This is the first report to propose the optimal design of grooves on the necks of dental implants for improving bone quality parameters as well as BMD. The findings suggest that not only BMD, but also bone quality, could be a useful clinical parameter in implant dentistry. STATEMENT OF SIGNIFICANCE Although the paradigm of bone quality has shifted from density-based assessments to structural evaluations of bone, clarifying bone quality based on structural bone evaluations remains challenging in implant dentistry. In this study, we firstly demonstrated that the optimal design of dental implant necks improved bone quality defined as osteocytes and the preferential alignment degree of biological apatite c-axis/collagen fibers using light microscopy, polarized light microscopy, and a microbeam X-ray diffractometer system, after application of controlled mechanical load. Our new findings suggest that bone quality around dental implants could become a new clinical parameter as well as bone mineral density in order to completely account for bone strength in implant dentistry.


Journal of Biomechanics | 2015

Ultrastructural alterations of osteocyte morphology via loaded implants in rabbit tibiae.

Muneteru Sasaki; Shinichiro Kuroshima; Yuri Aoki; Nao Inaba; Takashi Sawase

Osteocytes are crucial cells that control bone responses to mechanical loading. However, the effects of mechanical loading on osteocytes around dental implants are unclear. The aim of this study was to investigate whether mechanical loading via bone-integrated implants influences osteocyte number and morphology in the surrounding bone. Fourteen anodized Ti-6Al-4V alloy dental implants were placed in seven Japanese white rabbits, and implants in each rabbit were subjected to mechanical loading (50N, 3Hz for 1800 cycles, 2 days/week) along the implant long axis. Eight weeks after the initiation of loading, histomorphometric analysis and microcomputed tomography were performed. Scanning electron microscopy (SEM) was also performed with an acid etching technique using longitudinal and cross-sectional specimens. More bone formation around loaded implants was noted. In the implant neck, osteocytes tended to be more spherical with increased dendrite processes around loaded implants, while spindle-shaped osteocytes without increased dendrite processes were observed around unloaded implants in both longitudinal and cross-sectional images. In the bottom area, morphological changes in osteocytes were observed around loaded implants; however, dendrite processes did not differ in longitudinal or cross-sectional images, regardless of mechanical loading. These findings indicate that increased osteocyte numbers and developed dendrite processes are associated with anabolic bone responses to mechanical loading. The combination of acid etching and SEM imaging is a useful technique to assess ultrastructural osteocyte morphology around dental implants.


Oral Science International | 2012

Morphological aspects of the biological function of the osteocytic lacunar canalicular system and of osteocyte-derived factors

Muneteru Sasaki; Hiromi Hongo; Tomoka Hasegawa; Reiko Suzuki; Liu Zhusheng; Paulo Henrique Luiz de Freitas; Tamaki Yamada; Kimimitsu Oda; Tsuneyuki Yamamoto; Minqi Li; Yasunori Totsuka; Norio Amizuka

Abstract Osteocytes are organized in functional syncytia collectively referred to as the osteocytic lacunar–canalicular system (OLCS). The osteocytes are interconnected through gap junctions between their cytoplasmic processes, which pass through narrow passageways referred to as osteocytic canaliculi. There are two possible ways molecules can be transported throughout the OLCS: via the cytoplasmic processes and their gap junctions, and via the pericellular space in the osteocytic canaliculi. Transport of minerals and small molecules through a spatially well-organized OLCS is vital for bone mineral homeostasis, mechanosensing, and bone remodeling control. Recently, osteocyte-derived molecules – sclerostin, dentin matrix protein-1, fibroblast growth factor 23 (FGF23) – have been put in evidence as they may be related to osteocytic functions such as mechanosensing, regulation of bone remodeling, and so forth. FGF23 regulates serum phosphate concentration by affecting renal function, while sclerostin can inhibit osteoblastic activities. In our observations, FGF23 and sclerostin synthesis seemed to be associated with the spatial regularity of the OLCS. This review will introduce our recent morphological studies on the regularity of OLCS and the synthesis of osteocyte-derived FGF23 and sclerostin.


Journal of Histochemistry and Cytochemistry | 2016

Localization of Minodronate in Mouse Femora Through Isotope Microscopy

Hiromi Hongo; Muneteru Sasaki; Sachio Kobayashi; Tomoka Hasegawa; Tomomaya Yamamoto; Kanako Tsuboi; Erika Tsuchiya; Tomoya Nagai; Naznin Khadiza; Miki Abe; Ai Kudo; Kimimitsu Oda; Paulo Henrique Luiz de Freitas; Minqi Li; Hisayoshi Yurimoto; Norio Amizuka

Minodronate is highlighted for its marked and sustained effects on osteoporotic bones. To determine the duration of minodronate’s effects, we have assessed the localization of the drug in mouse bones through isotope microscopy, after labeling it with a stable nitrogen isotope ([15N]-minodronate). In addition, minodronate-treated bones were assessed by histochemistry and transmission electron microscopy (TEM). Eight-week-old male ICR mice received [15N]-minodronate (1 mg/kg) intravenously and were sacrificed after 3 hr, 24 hr, 1 week, and 1 month. Isotope microscopy showed that [15N]-minodronate was present mainly beneath osteoblasts rather than nearby osteoclasts. At 3 hr after minodronate administration, histochemistry and TEM showed osteoclasts with well-developed ruffled borders. However, osteoclasts were roughly attached to the bone surfaces and did not feature ruffled borders at 24 hr after minodronate administration. The numbers of tartrate-resistant acid phosphatase–positive osteoclasts and alkaline phosphatase–reactive osteoblastic area were not reduced suddenly, and apoptotic osteoclasts appeared in 1 week and 1 month after the injections. Von Kossa staining demonstrated that osteoclasts treated with minodronate did not incorporate mineralized bone matrix. Taken together, minodronate accumulates in bone underneath osteoblasts rather than under bone-resorbing osteoclasts; therefore, it is likely that the minodronate-coated bone matrix is resistant to osteoclastic resorption, which results in a long-lasting and bone-preserving effect.

Collaboration


Dive into the Muneteru Sasaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge