Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Munir Iqbal is active.

Publication


Featured researches published by Munir Iqbal.


PLOS ONE | 2009

Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses.

Munir Iqbal; Tahir Yaqub; Kolli Reddy; John W. McCauley

The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.


Journal of Virology | 2004

Role for Bovine Viral Diarrhea Virus Erns Glycoprotein in the Control of Activation of Beta Interferon by Double-Stranded RNA

Munir Iqbal; Emma Poole; Stephen Goodbourn; John W. McCauley

ABSTRACT Production of alpha/beta interferon in response to viral double-stranded RNA (dsRNA) produced during viral replication is a first line of defense against viral infections. Here we demonstrate that the Erns glycoprotein of the pestivirus bovine viral diarrhea virus can act as an inhibitor of dsRNA-induced responses of cells. This effect is seen whether Erns is constitutively expressed in cells or exogenously added to the culture medium. The Erns effect is specific to dsRNA since activation of NF-κB in cells infected with Semliki Forest virus or treated with tumor necrosis factor alpha was not affected. We also show that Erns contains a dsRNA-binding activity, and its RNase is active against dsRNA at a low pH. Both the dsRNA binding and RNase activities are required for the inhibition of dsRNA signaling, and we discuss here a model to account for these observations.


Journal of General Virology | 2000

Interactions of bovine viral diarrhoea virus glycoprotein Erns with cell surface glycosaminoglycans.

Munir Iqbal; Helen Flick-Smith; John W. McCauley

Recombinant E(rns) glycoprotein of bovine viral diarrhoea virus (BVDV) has been tagged with a marker epitope or linked to an immunoglobulin Fc tail and expressed in insect and mammalian cell lines. The product was shown to be functional, both having ribonuclease activity and binding to a variety of cells that were permissive and non-permissive for replication of BVDV. Addition of soluble E(rns) to the medium blocked replication of BVDV in permissive cells. Binding of epitope-tagged E(rns) to permissive calf testes (CTe) cells was abolished and virus infection was reduced when cells were treated with heparinases I or III. E(rns) failed to bind to mutant Chinese hamster ovary (CHO) cells that lacked glycosaminoglycans (pgsA-745 cells) or heparan sulphate (pgsD-677 cells) but bound to normal CHO cells. E(rns) also bound to heparin immobilized on agarose and could be eluted by heparin and by a high concentration of salt. Flow cytometric analysis of E(rns) binding to CTe cell cultures showed that glycosaminoglycans such as heparin, fucoidan and dermatan sulphate all inhibit binding but dextran sulphate, keratan sulphate, chondroitin sulphate and mannan fail to inhibit binding. The low molecular mass polysulphonated inhibitor suramin also inhibited binding to CTe cells but poly-L-lysine did not. Furthermore, suramin, the suramin analogue CPD14, fucoidan and pentosan polysulphate inhibited the infectivity of virus. It is proposed that binding of E(rns) to cells is through an interaction with glycosaminoglycans and that BVDV may bind to cells initially through this interaction.


Nature | 2016

Species difference in ANP32A underlies influenza A virus polymerase host restriction

Jason S. Long; Efstathios S. Giotis; Olivier Moncorgé; Rebecca Frise; Bhakti Mistry; Joe James; Mireille Morisson; Munir Iqbal; Alain Vignal; Michael A. Skinner; Wendy S. Barclay

Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.


Vaccine | 2011

Recombinant herpesvirus of turkeys as a vector-based vaccine against highly pathogenic H7N1 avian influenza and Marek's disease

Yongqing Li; Kolli Reddy; Scott M. Reid; William J. Cox; Ian H. Brown; Paul Britton; Venugopal Nair; Munir Iqbal

A major challenge for poultry vaccination is the design of vaccines that protect against multiple pathogens via a single protective dose delivered through mass vaccination methods. In this investigation, we examined herpesvirus of turkeys (HVT) as a vaccine vector for delivery of haemagglutinin (HA) antigen of highly pathogenic H7N1 avian influenza virus that can act as a dual vaccine against avian influenza and Mareks disease. The HVT vector was developed using reverse genetics based on an infectious bacterial artificial chromosome (BAC) clone of HVT. The BAC carrying the HVT genome was genetically modified to express the HA gene of a highly pathogenic H7N1 virus. The resultant recombinant BAC construct containing the modified HVT sequence was transfected into chicken embryo fibroblast (CEF) cells, and HVT recombinants (rHVT-H7HA) harbouring the H7N1 HA were recovered. Analysis of cultured CEF cells infected with the rHVT-H7HA showed that HA was expressed and that the rescued rHVT-H7HA stocks were stable during several in vitro passages with no difference in growth kinetics compared with the parent HVT. Immunisation of one-day-old chicks with rHVT-H7HA induced H7-specific antibodies and protected chickens challenged with homologous H7N1 virus against virus shedding, clinical disease and death. This vaccine supports differentiation between infected and vaccinated animals (DIVA) vaccination strategies because no nucleoprotein-(NP) specific antibodies were detected in the rHVT-H7HA vaccinated birds. The rHVT-H7HA not only provided protection against a lethal challenge with highly pathogenic H7N1 virus but also against highly virulent Mareks disease virus and can be used as a DIVA vaccine.


Veterinary Research | 2013

Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds

Munir Iqbal; Tahir Yaqub; Nadia Mukhtar; Muhammad Zubair Shabbir; John W. McCauley

Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises.


Microbiology | 1994

Thermostable extracellular peroxidases from Streptomyces thermoviolaceus

Munir Iqbal; Derry K. Mercer; Peter G. G. Miller; Alan J. McCarthy

Streptomyces thermoviolaceus is a thermophilic actinomycete that was found to produce relatively large amounts of extracellular peroxidase activity when grown on xylan as primary carbon source. The activity was due to multiple isoforms of peroxidase, of which two, designated P-3 and P-5, were predominant. The two proteins were purified to homogeneity by a combination of ultrafiltration, ammonium sulphate precipitation, anion-exchange chromatography, gel filtration and preparative gel electrophoresis. The peroxidases were found to be haemoproteins that catalysed the oxidation of a range of substrates in the presence of hydrogen peroxide. Both are monomeric acidic proteins (P-3: 82 kDa, pl 5.0; P-5: 60 kDa, pl 4.75) but with some differences in substrate specificity, P-3 exhibiting the broader substrate range. Peroxidase activity was optimal at pH values close to neutrality, and both enzymes were robust, exhibiting activity at elevated temperatures in the presence of denaturing agents such as SDS or 8 M urea. Peroxidase P-3 was stable at 50° for more than 24 h and had a half-life of 70 min at 70°. Polyclonal antibodies prepared against each isoform cross-reacted, indicating that the proteins were antigenically related. No cross-reactions were detected against horseradish peroxidase or crude peroxidase preparations from two other thermophilic streptomycetes.


Journal of General Virology | 2002

Identification of the glycosaminoglycan-binding site on the glycoprotein E rns of bovine viral diarrhoea virus by site- directed mutagenesis

Munir Iqbal; John W. McCauley

Bovine viral diarrhoea virus (BVDV) envelope glycoprotein E(rns) interacts with highly sulphated heparin-like glycosaminoglycans (GAGs) located on the cell surface as an early step in virus infection of cells. Site-directed mutagenesis of recombinant E(rns) was undertaken and analysis of mutants by heparin-affinity chromatography and cell surface binding showed that a cluster of basic amino acids (480KKLENKSK487) near the C terminus of E(rns) was essential for binding. Mutants with amino acid substitutions of lysine residues 481 and 485 in E(rns) reduced the binding of E(rns) to immobilized heparin and cellular GAGs but retained ribonuclease activity. In contrast to normal E(rns), E(rns) that was unable to bind to cells also failed to inhibit BVDV infection of cells when the cells were pre-incubated with E(rns). It is proposed that the cluster of basic residues (480KKLENKSK487) localized at the C-terminal end of E(rns) constitutes a GAG-binding site.


Philosophical Transactions of the Royal Society B | 2009

Within-host variation of avian influenza viruses

Munir Iqbal; Hiaxia Xiao; Greg Baillie; Andrew Warry; Steve C. Essen; Brandon Z. Londt; Sharon M. Brookes; Ian H. Brown; John W. McCauley

The emergence and spread of H5N1 avian influenza viruses from Asia through to Europe and Africa pose a significant animal disease problem and have raised concerns that the virus may pose a pandemic threat to humans. The epizootological factors that have influenced the wide distribution of the virus are complex, and the variety of viruses currently circulating reflects these factors. Sequence analysis of the virus genes sheds light on the H5N1 virus evolution during its emergence and spread, but the degree of virus variation at the level of an individual infected bird has been described in only a few studies. Here, we describe some results of a study in which turkeys, ducks and chickens were infected with either one of two H5N1 or one of three H7N1 viruses, and the degree of sequence variation within an individual infected avian host was examined. We developed ‘deep amplicon’ sequence analysis for this work, and the methods and results provide a background framework for application to disease outbreaks in the field.


PLOS ONE | 2012

Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

Roberto A. Saenz; Steve C. Essen; Sharon M. Brookes; Munir Iqbal; J. L. N. Wood; Bryan T. Grenfell; John W. McCauley; Ian H. Brown; Julia R. Gog

Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.5–2.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size.

Collaboration


Dive into the Munir Iqbal's collaboration.

Top Co-Authors

Avatar

Joshua E. Sealy

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Ian H. Brown

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Dalby

University of Westminster

View shared research outputs
Top Co-Authors

Avatar

Jean-Remy Sadeyen

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Muhammad Munir

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Pengxiang Chang

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Sharon M. Brookes

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar

Thomas P. Peacock

Institute for Animal Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge