Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murad Ookhtens is active.

Publication


Featured researches published by Murad Ookhtens.


Journal of Clinical Investigation | 1991

Impaired uptake of glutathione by hepatic mitochondria from chronic ethanol-fed rats. Tracer kinetic studies in vitro and in vivo and susceptibility to oxidant stress.

José C. Fernández-Checa; Carmen García-Ruiz; Murad Ookhtens; Neil Kaplowitz

Isolated hepatocytes incubated with [35S]-methionine were examined for the time-dependent accumulation of [35S]-glutathione (GSH) in cytosol and mitochondria, the latter confirmed by density gradient purification. In GSH-depleted and -repleted hepatocytes, the increase of specific activity of mitochondrial GSH lagged behind cytosol, reaching nearly the same specific activity by 1-2 h. However, in hepatocytes from ethanol-fed rats, the rate of increase of total GSH specific radioactivity in mitochondria was markedly suppressed. In in vivo steady-state experiments, the mass transport of GSH from cytosol to mitochondria and vice versa was 18 nmol/min per g liver, indicating that the half-life of mitochondrial GSH was approximately 18 min in controls. The fractional transport rate of GSH from cytosol to mitochondria, but not mitochondria to cytosol, was significantly reduced in the livers of ethanol-fed rats. Thus, ethanol-fed rats exhibit a decreased mitochondrial GSH pool size due to an impaired entry of cytosol GSH into mitochondria. Hepatocytes from ethanol-fed rats exhibited a greater susceptibility to the oxidant stress-induced cell death from tert-butylhydroperoxide. Incubation with glutathione monoethyl ester normalized the mitochondrial GSH and protected against the increased susceptibility to t-butylhydroperoxide, which was directly related to the lowered mitochondrial GSH pool size in ethanol-fed cells.


Journal of Clinical Investigation | 1990

Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat.

R Kannan; J F Kuhlenkamp; E Jeandidier; H Trinh; Murad Ookhtens; Neil Kaplowitz

Information on the origin of brain glutathione and the possibility of its transport from blood to brain is limited. We found a substantial uptake of 35S-labeled glutathione by the rat brain using the carotid artery injection technique. The brain uptake index of glutathione with and without an irreversible gamma-glutamyl transpeptidase inhibitor, acivicin, was similar. No significant differences in the regional uptake of labeled glutathione were found in rats pretreated with acivicin. The brain uptake index of tracer glutathione was similar to that of cysteine tracer and was lower than that of phenylalanine. The transport of oxidized glutathione (glutathione disfulfide) across the blood-brain barrier was not significantly different from that of sucrose, an impermeable marker. Brain radioactivity 15 s after carotid artery injection of labeled glutathione to rats pretreated with acivicin was predominantly in the form of glutathione. The in vivo glutathione uptake was saturable with an apparent Km of 5.84 mM. Amino acids, amino acid analogues, and other compounds [cysteine, phenylalanine, glutathione disulfide, gamma-glutamylglutamate, gamma-glutamyl p-nitroanilide, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH)] did not affect glutathione transport. Our data suggest that glutathione is transported across the blood-brain barrier by a saturable and specific mechanism.


Journal of Clinical Investigation | 1987

Effect of chronic ethanol feeding on rat hepatocytic glutathione. Compartmentation, efflux, and response to incubation with ethanol.

José C. Fernández-Checa; Murad Ookhtens; Neil Kaplowitz

Hepatocytes from rats that were fed ethanol chronically for 6-8 wk were found to have a modest decrease in cytosolic GSH (24%) and a marked decrease in mitochondrial GSH (65%) as compared with pair-fed controls. Incubation of hepatocytes from ethanol-fed rats for 4 h in modified Fishers medium revealed a greater absolute and fractional GSH efflux rate than controls with maintenance of constant cellular GSH, indicating increased net GSH synthesis. Inhibition of gamma-glutamyltransferase had no effect on these results, which indicates that no degradation of GSH had occurred during these studies. Enhanced fractional efflux was also noted in the perfused livers from ethanol-fed rats. Incubation of hepatocytes in medium containing up to 50 mM ethanol had no effect on cellular GSH, accumulation of GSH in the medium, or cell viability. Thus, chronic ethanol feeding causes a modest fall in cytosolic and a marked fall in mitochondrial GSH. Fractional GSH efflux and therefore synthesis are increased under basal conditions by chronic ethanol feeding, whereas the cellular concentration of GSH drops to a lower steady state level. Incubation of hepatocytes with ethanol indicates that it has no direct, acute effect on hepatic GSH homeostasis.


Journal of Clinical Investigation | 1985

Sinusoidal efflux of glutathione in the perfused rat liver. Evidence for a carrier-mediated process.

Murad Ookhtens; K Hobdy; M C Corvasce; T Y Aw; Neil Kaplowitz

Turnover of hepatic glutathione in vivo in the rat is almost entirely accounted for by cellular efflux, of which 80-90% is sinusoidal. Thus, sinusoidal efflux play a major quantitative role in homeostasis of hepatic glutathione. Som preliminary observations from our laboratory (1983. J. Pharmacol. Exp. Ther. 224:141-147.) and circumstantial evidence in the literature seemed to imply that the raising of the hepatic glutathione concentration above normal was not accompanied by a rise in the rate of sinusoidal efflux. Based on these observations, we hypothesized that the sinusoidal efflux was probably a saturable process and that at normal levels of hepatic glutathione the efflux behaved as a zero-order process (near-saturation). We tested our hypothesis by the use of isolated rat livers perfused in situ, single pass, with hemoglobin-free, oxygenated buffer medium at pH 7.4 and 37 degrees C. Preliminary experiments established a range of perfusion rates (3-4 ml/min per g) for adequacy of oxygenation, lack of cell injury, and minimization of variability contributed by perfusion rates. Hepatic glutathione was lowered to below normal by a 48-h fast, diethylmaleate (0.1-1.0 ml/kg i.p.), and buthionine sulfoximine (8 mmol/kg i.p.), and raised to above normal by 3-methylcholanthrene (20 mg/kg x 3 d i.p.) and cobalt chloride (0.05-0.27 g/kg-1 subcutaneously). Steady state sinusoidal efflux from each liver was measured over a 1-h perfusion, during which the coefficient of variation of glutathione in perfusates stayed within 10%. Hepatic glutathione efflux as a function of hepatic concentration was characterized by saturable kinetics with sigmoidal (non-hyperbolic) features. The data were fitted best with the Hill model and the following parameter values were estimated: Vmax = 20 nmol/min per g, Km = 3.2 mumol/g, and n = 3 binding/transport sites. The efflux could be inhibited reversibly by sulfobromophthalein-glutathione conjugate but was not affected by the addition of glutathione to the perfusion medium. The results support our hypothesis that sinusoidal efflux of glutathione is near saturation (approximately equal to 80% of Vmax) at normal (fed and fasted) liver glutathione concentrations. The phenomenon of saturability coupled with the ability to inhibit the efflux leads us to propose that sinusoidal efflux from hepatocytes appears to be a carrier-mediated process. Some recent studies by others, using sinusoidal membrane-enriched vesicles, also support these conclusions.


Journal of Clinical Investigation | 1989

Effects of chronic ethanol feeding on rat hepatocytic glutathione. Relationship of cytosolic glutathione to efflux and mitochondrial sequestration.

José C. Fernández-Checa; Murad Ookhtens; Neil Kaplowitz

Chronic ethanol feeding to rats increases the sinusoidal component of hepatic glutathione (GSH) efflux, despite a lower steady-state GSH pool size. In the present studies, no increase of biliary GSH efflux in vivo was found in chronic ethanol-fed cells. Studies were performed on ethanol-fed and pair-fed cells to identify the kinetic parameters of cellular GSH concentration-dependent efflux. The relationship between cytosolic GSH and the rate of efflux was modeled by the Hill equation, revealing a similar Vmax, 0.22 +/- 0.013 vs. 0.20 +/- 0.014 nmol/min per 10(6) cells for ethanol-fed and pair-fed cells, respectively, whereas the Km was significantly decreased (25.3 +/- 2.3 vs. 33.5 +/- 1.4 nmol/10(6) cells) in ethanol-fed cells. The difference in Km was larger when the data were corrected for the increased water content in ethanol-fed cells. We found a direct correlation between mitochondria and cytosolic GSH, revealing that mitochondria from ethanol-fed cells have less GSH at all cytosolic GSH values. The rate of resynthesis in depleted ethanol-fed cells in the presence of methionine and serine was similar to control cells and gamma-glutamylcysteine synthetase remained unaffected by chronic ethanol. However, the reaccumulation of mitochondrial GSH as the cytosolic pool increased was impaired in the ethanol cells. The earliest time change in GSH regulation was a 50% decrease in the mitochondrial GSH at 2 wk.


Journal of the American College of Cardiology | 1984

Amiodarone-digoxin interaction: Clinical significance, time course of development, potential pharmacokinetic mechanisms and therapeutic implications

Koonlawee Nademanee; Ramaswamy Kannan; Joanm Hendrickson; Murad Ookhtens; Isabelle Kay; Bramah N. Singh

Administration of amiodarone (600 to 1,600 mg/day) to 28 patients during long-term digoxin therapy (0.25 +/- 0.05 mg/day) increased serum digoxin level from 0.97 +/- 0.45 to 1.98 +/- 0.84 ng/ml (p less than 0.001). Gastrointestinal side effects occurred in nine patients, central nervous system reactions occurred in five and cardiovascular reactions occurred in four. Pharmacokinetic studies in six patients with a 1 mg intravenous digoxin dose before and during amiodarone therapy increased serum digoxin level at 30 minutes from 8.59 +/- 1.68 to 10.07 +/- 1.70 ng/ml (p less than 0.05). Amiodarone caused a 31% prolongation of digoxin elimination half-life from 49.5 +/- 8.8 to 65.0 +/- 28.8 hours, but the increase in half-life was not statistically significant. Total body clearance was reduced significantly (29%, p less than 0.05) from 2.05 +/- 0.76 to 1.46 +/- 0.64 ml/min per kg. Nonrenal clearance also showed a significant decrease (33%, p less than 0.05) from 1.20 +/- 0.46 to 0.80 +/- 0.30 ml/min per kg. The renal clearance decreased by 22% and the volume of distribution decreased by 11% after amiodarone therapy, but these changes were not significant. The data show that the mechanism of digoxin-amiodarone interaction is multifactorial and emphasize the need for close monitoring of serum digoxin levels and clinical features during concurrent digoxin-amiodarone therapy.


Cancer Research | 2007

Impaired Dihydrotestosterone Catabolism in Human Prostate Cancer: Critical Role of AKR1C2 as a Pre-Receptor Regulator of Androgen Receptor Signaling

Qing Ji; Lilly Chang; Frank Z. Stanczyk; Murad Ookhtens; Andy Sherrod; Andrew Stolz

We previously reported the selective loss of AKR1C2 and AKR1C1 in prostate cancers compared with their expression in paired benign tissues. We now report that dihydrotestosterone (DHT) levels are significantly greater in prostate cancer tumors compared with their paired benign tissues. Decreased catabolism seems to account for the increased DHT levels as expression of AKR1C2 and SRD5A2 was reduced in these tumors compared with their paired benign tissues. After 4 h of incubation with benign tissue samples, (3)H-DHT was predominantly catabolized to the 5alpha-androstane-3alpha,17beta-diol metabolite. Reduced capacity to metabolize DHT was observed in tumor samples from four of five freshly isolated pairs of tissue samples, which paralleled loss of AKR1C2 and AKR1C1 expression. LAPC-4 cells transiently transfected with AKR1C1 and AKR1C2, but not AKR1C3, were able to significantly inhibit a dose-dependent, DHT-stimulated proliferation, which was associated with a significant reduction in the concentration of DHT remaining in the media. R1881-stimulated proliferation was equivalent in all transfected cells, showing that metabolism of DHT was responsible for the inhibition of proliferation. PC-3 cells overexpressing AKR1C2 and, to a lesser extent, AKR1C1 were able to significantly inhibit DHT-dependent androgen receptor reporter activity, which was abrogated by increasing DHT levels. We speculate that selective loss of AKR1C2 in prostate cancer promotes clonal expansion of tumor cells by enhancement of androgen-dependent cellular proliferation by reducing DHT metabolism.


Journal of Clinical Investigation | 1987

Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by 3 alpha-hydroxysteroid dehydrogenase. II. Studies in the prograde and retrograde single-pass, perfused rat liver and inhibition by indomethacin.

Hajime Takikawa; Murad Ookhtens; Andrew Stolz; Neil Kaplowitz

[3 beta-3H, 24-14C]Lithocholic, chenodeoxycholic, and cholic acids were administered in tracer bolus doses either prograde or retrograde in the isolated perfused rat liver. Little 3H loss from cholic acid was observed, whereas with the other bile acids, 20-40% of the administered 3H was lost in a single pass from perfusate to bile. Most of the 3H loss occurred rapidly (5 min) and was recovered as [3H]water in perfusate. Excretion of bile acids was delayed with retrograde administration, and 3H loss was more extensive. In both prograde and retrograde studies, indomethacin markedly inhibited the excretion of the bolus of bile acid into bile. Indomethacin inhibited the extraction of glycocholate (50 microM) during steady state perfusion without affecting transport maximum for excretion. At lower glycocholate concentration (5 microM), indomethacin inhibited both extraction and excretion. A greater effect was seen on excretion in the latter case, which suggests that displacement of bile acid from the cytosolic protein lead to redistribution in the hepatocyte as well as reflux into the sinusoid. These data suggest that binding of bile acids to cytosolic 3 alpha-hydroxysteroid dehydrogenases occurs extensively during hepatic transit and is important in mediating the translocation of bile acids from the sinusoidal to canalicular pole of the cell.


Alcoholism: Clinical and Experimental Research | 2008

Effect of Transgenic Extrahepatic Expression of Betaine-Homocysteine Methyltransferase on Alcohol or Homocysteine-Induced Fatty Liver

Cheng Ji; Masao Shinohara; Dennis E. Vance; Tin Aung Than; Murad Ookhtens; Christine Chan; Neil Kaplowitz

BACKGROUND Chronic alcohol feeding induces hyperhomocysteinemia (HHcy). Previously, we reported a protective role of betaine-homocysteine methyltransferase (BHMT) in homocysteine-induced injury in cultured hepatocytes. In this study, we investigated the direct role of BHMT in alcohol or homocysteine-induced liver injury. METHODS Betaine-homocysteine methyltransferase transgenic (Tg) mice were generated. Comparisons were made between the Tg and wild type (WT) mice in their response to intragastric alcohol infusion or to oral feeding of a high methionine low folate diet (HMLF). RESULTS Expression of the Tg BHMT was increased in organs peripheral to the liver. The alcohol infusion for 4 weeks increased: plasma ALT by 5-fold in WT mice and 2.7-fold in Tg mice; plasma homocysteine by 7-fold in WT mice and 2-fold in Tg mice; liver triglycerides by 4-fold in WT mice and 2.5-fold in Tg mice. The alcohol-induced fatty liver was more severe in WT than in Tg mice based on H&E staining. The HMLF feeding for 4 weeks increased plasma ALT by 2-fold in WT mice and 1-fold in Tg mice; plasma homocysteine by 21-fold in WT mice and 3.3-fold in Tg mice; liver triglycerides by 2.5-fold in WT mice and 1.5-fold in Tg mice. HMLF induced accumulation of macro fat droplets in WT but not Tg mice. Betaine supplementation decreased partially the alcohol or HMLF-induced increase of ALT, homocysteine and liver lipids in WT mice. However, Tg mice were normal when fed both HMLF and betaine. In WT mice, both alcohol and HMLF induced moderate increase of sterol regulatory element binding protein 1 (SREBP1) protein which was partially reduced by betaine supplementation. In Tg mice, alcohol but not HMLF increased SREBP1. Carbohydrate responsive element-binding protein was increased by alcohol in either WT or Tg mice which was not affected by betaine supplementation. Ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) was reduced by 50% in WT and by 20% in Tg mice fed alcohol. Ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE) was reduced in WT but not Tg mice fed alcohol. Changes in PE methyltransferase activities were not detected in response to alcohol or HMLF feeding but were increased by betaine. CONCLUSIONS The BHMT Tg mice are resistant to alcohol or HMLF-induced HHcy and liver steatosis indicating that peripheral metabolism of homocysteine protected the liver without a direct effect of BHMT in the liver. Multiple mechanisms are involved in protection by betaine including increased SAM/SAH and PC/PE ratios.


Journal of Clinical Investigation | 1988

Inhibition of glutathione efflux in the perfused rat liver and isolated hepatocytes by organic anions and bilirubin. Kinetics, sidedness, and molecular forms.

Murad Ookhtens; Irving Lyon; José C. Fernández-Checa; Neil Kaplowitz

Using isolated, in situ, single-pass perfused rat livers, incubations of freshly isolated hepatocytes, and sinusoidal membrane-enriched vesicles, we and others have shown the saturability of transport (efflux) of hepatic glutathione (GSH). These observations have implicated a carrier mechanism. Our present studies were designed to provide further evidence in support of a carrier mechanism for hepatic GSH efflux by demonstrating competition by liver-specific ligands which are taken up by hepatocytes. Perfusing livers with different substances, we found that: (a) sulfobromophthalein-GSH (BSP-GSH) had a dose-dependent and fully reversible inhibitory effect on GSH efflux, while GSH alone did not have any effect; (b) taurocholate had no inhibitory effect; (c) all of the organic anions studied, i.e., BSP, rose bengal, indocyanine green, and unconjugated bilirubin (UCB), manifested potent, dose-dependent inhibitory effects, with absence of toxic effects and complete reversibility of inhibition in the case of UCB. The inhibitory effects of UCB could be overcome partially by raising (CoCl2-induced) hepatic GSH concentration. Because of the physiological importance of UCB, we conducted a detailed study of its inhibitory kinetics in the isolated hepatocyte model in the range of circulating concentrations of UCB. Studies with Cl- -free media, to inhibit the uptake of UCB by hepatocytes, showed that the inhibition of GSH efflux by UCB is apparently from inside the cell. This point was confirmed by showing that the inhibition is overcome only when bilirubin-loaded cells are cleared of bilirubin (incubation with 5% bovine serum albumin). Using Gunn rat hepatocytes and purified bilirubin mono- and diglucuronides, we found that both UCB and glucuronide forms of bilirubin inhibit GSH efflux in a dose-dependent manner. We conclude that the organic anions, although taken up by a mechanism independent of GSH, may competitively inhibit the carrier for GSH efflux from inside the hepatocyte.

Collaboration


Dive into the Murad Ookhtens's collaboration.

Top Co-Authors

Avatar

Neil Kaplowitz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

José C. Fernández-Checa

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Nome Baker

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Andrew Stolz

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Irving Lyon

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Z. Stanczyk

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qing Ji

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge