Murali Naidu
University of Malaya
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Murali Naidu.
Clinical Anatomy | 1999
Phrabhakaran Nambiar; Murali Naidu; Krishnan Subramaniam
The uniqueness of anatomical structures and their variations provides the basis for forensic identification of unknown deceased persons. Similar to fingerprints, each frontal sinus is so distinctive and unique that the chances of two individuals having the same morphology of the frontal sinuses is extremely remote. Radiographs, especially the occipitomental view commonly used in the assessment of paranasal pathology, provide excellent records of these sinuses. The case illustrated here is an application of the frontal sinus identification of a victim in a mass disaster. Clin. Anat. 12:16–19, 1999.
Molecular and Cellular Neuroscience | 2003
Daniel A. Morgenstern; Richard A. Asher; Murali Naidu; Thomas Carlstedt; Joel M. Levine; James W. Fawcett
We have investigated expression of the axon growth-inhibitory proteoglycan NG2 in peripheral nerve. In the adult, NG2 was present on endoneurial and perineurial fibroblasts, but not on Schwann cells. At birth, peripheral nerve NG2 was heavily glycanated, but was much less so in the adult. In vitro, sciatic nerve fibroblasts also produced heavily glycanated NG2. After peripheral nerve injury in rats and humans, an accumulation of NG2-positive cells was observed at the injury site. In the rat, there was an increase in NG2 glycanation for at least 2 weeks following injury. In mixed cultures of Schwann cells and peripheral nerve fibroblasts, the axons preferred to grow on the Schwann cells and seldom crossed onto the fibroblasts. Three-dimensional cultures of sciatic nerve fibroblasts were inhibitory to the growth of dorsal root ganglion axons. Inhibition of proteoglycan synthesis made the cells more permissive. NG2 may play a part in blocking axon regeneration through scar tissue in injured human peripheral nerve.
Behavioural Brain Research | 2013
Fatemeh Hemmati; Leila Dargahi; Sanaz Nasoohi; Rana Omidbakhsh; Zahurin Mohamed; Zamri Chik; Murali Naidu; Abolhassan Ahmadiani
Alzheimers disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
European Journal of Neuroscience | 2008
Francesca Properzi; Rachel Lin; Jessica C. F. Kwok; Murali Naidu; Toin H. van Kuppevelt; Gerdy B. ten Dam; Luiz M. Camargo; Ruma Raha-Chowdhury; Yoko Furukawa; Tadahisa Mikami; Kazuyuki Sugahara; James W. Fawcett
Heparan sulphate proteoglycans (HSPGs) have multiple functions relevant to the control of the CNS injury response, particularly in modulating the effects of growth factors and localizing molecules that affect axon growth. We examined the pattern of expression and glycanation of HSPGs in the normal and damaged CNS, and in astrocytes and oligodendrocyte precursors because of their participation in the injury reaction. The composition of HS glycosaminoglycan (GAG) chains was analysed by biochemical analysis and by the binding of antibodies that recognize sulphated epitopes. We also measured levels of HS sulphotransferases and syndecans. Compared with oligodendrocytes, oligodendrocyte precursors have more 2‐O‐sulphation in their HS GAG. This is accompanied by higher expression of the enzyme responsible for 2‐O‐sulphation, HS 2‐O‐sulphotransferase (HS2ST) and a fall in syndecan‐1. Astrocytes treated with tumour growth factor (TGF)α or TGFβ to mimic the injury response showed upregulation of syndecan‐1 and HS2ST correlating with an increase in 2‐O‐sulphate residues in their HS GAGs. This also correlated with increased staining with AO4B08 anti‐GAG antibody that recognizes high sulphation, and reduced staining with RB4EA12 recognizing low sulphation. After injury to the adult rat brain there was an overall increase in the quantity of HSPG around the injury site, mRNA for HS2ST was increased, and the changes in staining with sulphation‐specific antibodies were consistent with an increase in 2‐O‐sulphated HS. Syndecan‐1 was upregulated in astrocytes. The major injury‐related change, seen in injured brain and cultured glia, was an increase in 2‐O‐sulphated HS and increased syndecan‐1, suggesting novel approaches to modulating scar formation.
Critical Reviews in Biotechnology | 2015
Chia-Wei Phan; Murali Naidu; Kah-Hui Wong; Vikineswary Sabaratnam
Abstract Mushrooms have long been used not only as food but also for the treatment of various ailments. Although at its infancy, accumulated evidence suggested that culinary-medicinal mushrooms may play an important role in the prevention of many age-associated neurological dysfunctions, including Alzheimer’s and Parkinson’s diseases. Therefore, efforts have been devoted to a search for more mushroom species that may improve memory and cognition functions. Such mushrooms include Hericium erinaceus, Ganoderma lucidum, Sarcodon spp., Antrodia camphorata, Pleurotus giganteus, Lignosus rhinocerotis, Grifola frondosa, and many more. Here, we review over 20 different brain-improving culinary-medicinal mushrooms and at least 80 different bioactive secondary metabolites isolated from them. The mushrooms (either extracts from basidiocarps/mycelia or isolated compounds) reduced beta amyloid-induced neurotoxicity and had anti-acetylcholinesterase, neurite outgrowth stimulation, nerve growth factor (NGF) synthesis, neuroprotective, antioxidant, and anti-(neuro)inflammatory effects. The in vitro and in vivo studies on the molecular mechanisms responsible for the bioactive effects of mushrooms are also discussed. Mushrooms can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro evidence and clinical trials with humans are needed.
Evidence-based Complementary and Alternative Medicine | 2012
Lee-Fang Eik; Murali Naidu; Kah-Hui Wong; Yee Shin Tan; Vikineswary Sabaratnam
A national treasure mushroom, Lignosus rhinocerus, has been used to treat variety of ailments by local and indigenous communities in Malaysia. The aim of this study was to investigate the potential of the most valuable part of L. rhinocerus, the sclerotium, on neurite outgrowth activity by using PC-12Adh cell line. Differentiated cells with one thin extension at least double the length of the cell diameter were scored positive. Our results showed that aqueous sclerotium L. rhinocerus extract induced neurite outgrowths of 24.4% and 42.1% at 20 μg/mL (w/v) of aqueous extract alone and a combination of 20 μg/mL (w/v) aqueous extract and 30 ng/mL (w/v) of NGF, respectively. Combination of NGF and sclerotium extract had additive effects and enhanced neurite outgrowth. Neuronal differentiation was demonstrated by indirect immunofluorescence of neurofilament protein. Aqueous sclerotium extract contained neuroactive compounds that stimulated neurite outgrowth in vitro. To our knowledge this is the first report on neurite-stimulating activities of L. rhinocerus.
BMC Complementary and Alternative Medicine | 2013
Chia-Wei Phan; Murali Naidu; Kah-Hui Wong; Vikineswary Sabaratnam
BackgroundMushrooms are not only regarded as gourmet cuisine but also as therapeutic agent to promote cognition health. However, little toxicological information is available regarding their safety. Therefore, the aim of this study was to screen selected ethno-pharmacologically important mushrooms for stimulatory effects on neurite outgrowth and to test for any cytotoxicity.MethodsThe stimulatory effect of mushrooms on neurite outgrowth was assessed in differentiating mouse neuroblastoma (N2a) cells. Neurite length was measured using Image-Pro Insight processor system. Neuritogenesis activity was further validated by fluorescence immunocytochemical staining of neurofilaments. In vitro cytotoxicity was investigated by using mouse embryonic fibroblast (BALB/3T3) and N2a cells for any embryo- and neuro-toxic effects; respectively.ResultsAqueous extracts of Ganoderma lucidum, Lignosus rhinocerotis, Pleurotus giganteus and Grifola frondosa; as well as an ethanol extract of Cordyceps militaris significantly (p < 0.05) promoted the neurite outgrowth in N2a cells by 38.4 ± 4.2%, 38.1 ± 2.6%, 33.4 ± 4.6%, 33.7 ± 1.5%, and 35.8 ± 3.4%; respectively. The IC50 values obtained from tetrazolium (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) release assays showed no toxic effects following 24 h exposure of N2a and 3T3 cells to mushroom extracts.ConclusionOur results indicate that G. lucidum, L. rhinocerotis, P. giganteus, G. frondosa and C. militaris may be developed as safe and healthy dietary supplements for brain and cognitive health.
Evidence-based Complementary and Alternative Medicine | 2011
Kah-Hui Wong; Murali Naidu; Mahmood Ameen Abdulla; Noorlidah Abdullah; Umah Rani Kuppusamy; Vikineswary Sabaratnam
Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI) was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control) group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery.
Journal of Traditional and Complementary Medicine | 2013
Vikineswary Sabaratnam; Wong KahHui; Murali Naidu
Hericium erinaceus a culinary and medicinal mushroom is a well established candidate for brain and nerve health. Ganoderma lucidum, Grifola frondosa and Sarcodon scabrosus have been reported to have neurite outgrowth and neuronal health benefits. The number of mushrooms, however, studied for neurohealth activity are few compared to the more than 2 000 species of edible and / or medicinal mushrooms identified. In the on-going search for other potent culinary and / or medicinal mushrooms, indigenous mushrooms used in traditional medicines such as Lignosus rhinocerotis and Ganoderma neo-japonicum are also being investigated. Further, the edible mushroom, Pleurotus giganteus can be a potential candidate, too. Can these edible and medicinal mushrooms be tapped to tackle the health concerns of the aging population which is projected to be more than 80-90 million of people age 65 and above in 2050 who may be affected by age-related neurodegenerative disorders. Scientific validation is needed if these mushrooms are to be considered and this can be achieved by understanding the molecular and biochemical mechanisms involved in the stimulation of neurite outgrowth. Though it is difficult to extrapolate the in vitro studies to what may happen in the human brain, studies have shown that there can be improvement in cognitive abilities of the aged if the mushroom is incorporated in their daily diets.
BMC Complementary and Alternative Medicine | 2012
Chia-Wei Phan; Wei-Lun Wong; Murali Naidu; Vikineswary Sabaratnam
BackgroundDrugs dedicated to alleviate neurodegenerative diseases like Parkinson’s and Alzheimer’s have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal.MethodsThe fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom’s aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out.ResultsThe fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too.ConclusionsP. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be developed as a nutraceutical for the mitigation of neurodegenerative diseases.