Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murali Ramachandra is active.

Publication


Featured researches published by Murali Ramachandra.


Nature Biotechnology | 2001

Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy.

Murali Ramachandra; Amena Rahman; Aihua Zou; Mei Vaillancourt; John A. Howe; Douglas Antelman; Barry J. Sugarman; G. William Demers; Heidrun Engler; Duane E. Johnson; Paul Shabram

Replicating adenoviruses may prove to be effective anticancer agents if they can be engineered to selectively destroy tumor cells. We have constructed a virus (01/PEME) containing a novel regulatory circuit in which p53-dependent expression of an antagonist of the E2F transcription factor inhibits viral replication in normal cells. In tumor cells, however, the combination of p53 pathway defects and deregulated E2F allows replication of 01/PEME at near wild-type levels. The re-engineered virus also showed significantly enhanced efficacy compared with extensively studied E1b-deleted viruses such as dl1520 in human xenograft tumor models.


ACS Medicinal Chemistry Letters | 2013

Discovery of Pyridyl Bis(oxy)dibenzimidamide Derivatives as Selective Matriptase Inhibitors

Rajeev Goswami; Subhendu Mukherjee; Gerd Wohlfahrt; Chakshusmathi Ghadiyaram; Jwala Nagaraj; Beeram Ravi Chandra; Ramesh K. Sistla; Leena K. Satyam; Dodheri S. Samiulla; Anu Moilanen; Hosahalli Subramanya; Murali Ramachandra

Matriptase belongs to trypsin-like serine proteases involved in matrix remodeling/degradation, growth regulation, survival, motility, and cell morphogenesis. Herein, we report a structure-based approach, which led to the discovery of sulfonamide and amide derivatives of pyridyl bis(oxy)benzamidine as potent and selective matriptase inhibitors. Co-crystal structures of selected compounds in complex with matriptase supported compound designing. Additionally, WaterMap analyses indicated the possibility of occupying a distinct pocket within the catalytic domain, exploration of which resulted in >100-fold improvement in potency. Co-crystal structure of 10 with matriptase revealed critical interactions leading to potent target inhibition and selectivity against other serine proteases.


Journal of Medicinal Chemistry | 2014

3-alkoxy-pyrrolo[1,2-b]pyrazolines as selective androgen receptor modulators with ideal physicochemical properties for transdermal administration

Thomas Ullrich; Sanjita Sasmal; Venkatesham Boorgu; Srinivasu Pasagadi; Srisailam Cheera; Sujatha Rajagopalan; Archana Bhumireddy; Dhanya Shashikumar; Shekar Chelur; Charamanna Belliappa; Chetan Pandit; Narasimharao Krishnamurthy; Subhendu Mukherjee; Anuradha Ramanathan; Chakshusmathi Ghadiyaram; Murali Ramachandra; Paulo G. Santos; Bharat Lagu; Mark G. Bock; Mark H. Perrone; Sven Weiler; Hansjoerg Keller

We describe the synthesis and characterization of 3-alkoxy-pyrrolo[1,2-b]pyrazolines as novel selective androgen receptor (AR) modulators that possess excellent physicochemical properties for transdermal administration. Compound 26 bound to human AR with an IC50 of 0.7 nM with great selectivity over other nuclear hormone receptors and potently activated AR in a C2C12 muscle cell reporter gene assay with an EC50 of 0.5 nM. It showed high aqueous solubility of 1.3 g/L at pH 7.4, and an in silico model as well as a customized parallel artificial membrane permeability assay indicated good skin permeation. Indeed, when measuring skin permeation through excised human skin, an excellent flux of 2 μg/(cm(2)·h) was determined without any permeation enhancers. In a 2 week Hershberger model using castrated rats, the compound showed dose-dependent effects fully restoring skeletal muscle weight at 0.3 mg/kg/day after subcutaneous administration with high selectivity over prostate stimulation.


Bioorganic & Medicinal Chemistry | 2014

Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy.

Rajeev Goswami; Subhendu Mukherjee; Chakshusmathi Ghadiyaram; Gerd Wohlfahrt; Ramesh K. Sistla; Jwala Nagaraj; Leena K. Satyam; Krishnaprasad Subbarao; Rajendra K. Palakurthy; Sreevalsam Gopinath; Narasimha R. Krishnamurthy; Tarja Ikonen; Anu Moilanen; Hosahalli Subramanya; Pekka Kallio; Murali Ramachandra

Matriptase is a serine protease implicated in cancer invasion and metastasis. Expression of matriptase is frequently dysregulated in human cancers and matriptase has been reported to activate latent growth factors such as hepatocyte growth factor/scatter factor, and proteases such as urokinase plasminogen activator suggesting that matriptase inhibitors could have therapeutic potential in treatment of cancer. Here we report a structure-based approach which led to the discovery of selective and potent matriptase inhibitors with benzene as central core having 1,3,5 tri-substitution pattern. X-ray crystallography of one of the potent analogs in complex with matriptase revealed strong hydrogen bonding and salt-bridge interactions in the S1 pocket, as well as strong CH-π contacts between the P2/P4 cyclohexyl and Trp215 side-chain. An additional interaction of the pendant amine at cyclohexyl with Gln175 side-chain results in substantial improvement in matriptase inhibition and selectivity against other related serine proteases. Compounds 15 and 26 showed tumor growth inhibition in a subcutaneous DU-145 prostate cancer mouse model. These compounds could be useful as tools to further explore the biology of matriptase as a drug target.


Cancer Gene Therapy | 2005

Inefficient killing of quiescent human epithelial cells by replicating adenoviruses: potential implications for their use as oncolytic agents

Mei Vaillancourt; Isabella Atencio; Erlinda Quijano; John A. Howe; Murali Ramachandra

Cultured primary human cells have been widely used to assess the selectivity of oncolytic viruses as potential anticancer agents. As culture conditions can potentially have a significant impact on virus replication and ultimately cell killing, we evaluated the effects of dl309, a wild-type adenovirus, and dl01 / 07, a conditionally replicating adenovirus mutant, on quiescent and proliferating primary mammary epithelial cells. When primary cells were induced into quiescence, both viruses exhibited similar attenuated cell killing. However, cell killing by dl309 was superior to dl01 / 07 in proliferating primary cells. Analysis of viral effects at the level of entry, E2F activation, DNA replication, and late gene expression indicated that attenuation of dl309 in quiescent cells correlated with decreased expression of viral late genes such as hexon. In contrast, attenuation of dl01 / 07 in quiescent cells correlated with inefficient induction of E2F activity and inability to undergo efficient DNA replication. In proliferating cells, dl309 replicated efficiently, whereas dl01 / 07 still showed attenuated replication. In summary, our results indicate the intrinsic preference of wild-type adenoviruses for killing proliferating cells, which is an attractive feature for using adenoviruses as oncolytic agents. These results also highlight the need for the use of appropriate growth conditions for primary cells in vitro to distinguish subtle differences in cell killing among various oncolytic viruses.


Bioorganic & Medicinal Chemistry Letters | 2015

Discovery of O-(3-carbamimidoylphenyl)-l-serine amides as matriptase inhibitors using a fragment-linking approach

Rajeev Goswami; Gerd Wohlfahrt; Subhendu Mukherjee; Chakshusmathi Ghadiyaram; Jwala Nagaraj; Leena K. Satyam; Krishnaprasad Subbarao; Sreevalsam Gopinath; Narasimha R. Krishnamurthy; Hosahalli Subramanya; Murali Ramachandra

Matriptase is a cell-surface trypsin-like serine protease of epithelial origin, which cleaves and activates proteins including hepatocyte growth factor/scatter factor and proteases such as uPA, which are involved in the progression of various cancers. Here we report a fragment-linking approach, which led to the discovery of O-(3-carbamimidoylphenyl)-l-serine amides as potent matriptase inhibitors. The co-crystal structure of one of the potent inhibitors, 6 in complex with matriptase catalytic domain validated the working hypothesis guiding the development of this congeneric series and revealed the structural basis for matriptase inhibition. Replacement of a naphthyl group in 6 with 2,4,6-tri-isopropyl phenyl resulted in 10 with improved matriptase inhibition, which exhibited significant primary tumor growth inhibition in a mouse model of prostate cancer. Compounds such as 10, identified using a fragment-linking approach, can be explored further to understand the role of matriptase as a drug target in cancer and inflammation.


Cancer immunology research | 2017

Abstract A36: CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer

Adam S. Lazorchak; Troy Patterson; Yueyun Ding; Pottayil Govindan Nair Sasikumar; Naremaddepalli S. Sudarshan; Nagaraj M. Gowda; Raghuveer Ramachandra; Dodheri S. Samiulla; Sanjeev Giri; Rajesh Eswarappa; Murali Ramachandra; David Tuck; Timothy Wyant

The clinical success of antibody-mediated immune checkpoint blockade therapies has transformed the cancer therapy paradigm by demonstrating that durable antitumor immune responses and long-term remissions may be achieved in a subset of patients across a diverse range of cancers. However, the majority of patients fail to respond to antibody therapies targeting single immune checkpoint pathways and antibodies exhibit a long in vivo half-life (>15-20 days with >70% target occupancy for months) which may contribute to the emergence of immune-related adverse events. Additionally, antibody therapies must be administered by intravenous infusion in a hospital or clinic which places an additional burden on patients who may have mobility challenges. Thus, there is a significant opportunity for a novel immune checkpoint therapy that can address the shortcomings associated with the current antibody therapies. CA-170 is a small molecule, orally bioavailable antagonist of the PD-L1, PD-L2 and VISTA/PD-1H immune checkpoint pathways which is currently undergoing Phase I clinical testing. In preclinical safety studies conducted in rodents and non-human primates, orally administered CA-170 shows no signs of toxicity when dosed up to 1000 mg/kg for 28 consecutive days. CA-170 exhibits an oral bioavailability of approximately 40% and Citation Format: Adam S. Lazorchak, Troy Patterson, Yueyun Ding, Pottayil G. Sasikumar, Naremaddepalli S. Sudarshan, Nagaraj M. Gowda, Raghuveer K. Ramachandra, Dodheri S. Samiulla, Sanjeev Giri, Rajesh Eswarappa, Murali Ramachandra, David Tuck, Timothy Wyant. CA-170, an oral small molecule PD-L1 and VISTA immune checkpoint antagonist, promotes T cell immune activation and inhibits tumor growth in pre-clinical models of cancer. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2016 Oct 20-23; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2017;5(3 Suppl):Abstract nr A36.


Cancer Research | 2016

Abstract 4861: Oral immune checkpoint antagonists targeting PD-L1/VISTA or PD-L1/Tim3 for cancer therapy

Pottayil Govindan Nair Sasikumar; N S Sudarshan; Nagaraj M. Gowda; Dodheri S. Samiulla; Raghuveer Ramachandra; T Chandrasekhar; Sreenivas Adurthi; Jiju Mani; Rashmi Nair; Sharad Singh; Amit Dhudashia; Nagesh Gowda; Murali Ramachandra

Recent successes in achieving highly durable clinical responses with antibodies to immune checkpoint receptors such as CTLA4 and PD1 have transformed the outlook for cancer therapy. While these antibody-based therapies show impressive clinical activity, they suffer from the shortcomings including the need to administer by intravenous injection, failure to show response in majority of patients and immune-related adverse events (irAEs) due to the breaking of immune self-tolerance. Sustained target inhibition as a result of a long half-life (>15-20 days) and >70% target occupancy for months may be factors contributing to irAEs observed. We sought to discover and develop small molecule immune checkpoint antagonists capable of targeting PD-L1 and another immune checkpoint pathway. We reasoned that such therapeutic agents will be amenable for oral dosing, likely show greater response rate due to dual antagonism and allow better management of irAEs due a shorter pharmacokinetic profile. A focused library of compounds mimicking the interaction of checkpoint proteins was designed and synthesized. Screening and analysis of the resulting library led to the identification of hits capable of functional disruption of the checkpoint protein(s) signaling depending upon the pockets of sequence similarity of interacting proteins. Further optimization resulted in compounds targeting PD-L1/VISTA or PD-L1/TIM-3 with desirable physico-chemical properties and exposure upon oral administration.. The ability of compounds to disrupt specific immune checkpoint pathways was confirmed though functional studies. Identified lead compounds exhibit potent activity when tested in assays to rescue lymphocyte proliferation and effector functions inhibited by respective ligands/proteins. In a panel of functional assays, the selected lead compounds showed selectivity against other immune checkpoint pathways including CTLA4, LAG3 and BTLA. Lead compounds exhibited sustained immune PD in vitro and in vivo suggesting that drug efficacy may extend beyond drug clearance. Lead compounds exhibited significant efficacy in syngeneic pre-clinical tumor models of melanoma, breast carcinoma and colon cancers upon once a day oral dosing. In repeated dose toxicity studies, the most advanced compound, AUPM-170, a dual antagonist of PD-L1 and VISTA, was well tolerated at >100x of the efficacious doses. The data demonstrating the inhibition of PD-L1 and another immune checkpoint pathway (VISTA or Tim3) resulting in activation of T cells and anti-tumor activities support further development of these orally bioavailable agents. IND-enabling studies with one of the lead compounds, AUPM-170, are underway towards advancing it to the clinic. Citation Format: Pottayil Sasikumar, N S Sudarshan, Nagaraj Gowda, D S Samiulla, Raghuveer Ramachandra, T Chandrasekhar, Sreenivas Adurthi, Jiju Mani, Rashmi Nair, Sharad Singh, Amit Dhudashia, Nagesh Gowda, Murali Ramachandra. Oral immune checkpoint antagonists targeting PD-L1/VISTA or PD-L1/Tim3 for cancer therapy. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4861.


Journal for ImmunoTherapy of Cancer | 2013

A novel peptide therapeutic targeting PD1 immune checkpoint with equipotent antagonism of both ligands and a potential for better management of immune-related adverse events

Pottayil Sasikumar; Rajeev K. Shrimali; Sreenivas Adurthi; Raghuveer Ramachandra; Leena K. Satyam; Amit Dhudashiya; Dodheri S. Samiulla; K B Sunilkumar; Murali Ramachandra

Recent advances in achieving highly durable clinical responses via inhibition of immune checkpoint proteins including CTLA-4 and PD1 have revolutionized the outlook for cancer therapy. However, along with impressive clinical activity (response rate of ~25% with either anti-CTLA-4 or anti-PD1 as single agent, but > 50% with a combination), severe immune-related adverse events (irAEs) due to the breaking of immune self- tolerance (25-30% with anti-CTLA-4 and up to 15-17% with anti-PD1) are becoming increasingly evident. Sustained target inhibition as a result of a long half-life (>15-20 days) and >70% target occupancy for months are likely contributing to severe irAEs observed in the clinic with antibodies targeting immune checkpoint proteins. Our efforts are therefore focused on developing immune checkpoint blockers with potent anti-tumor activity but with a shorter pharmacokinetic profile as a strategy to better manage severe irAEs. Flexibility in adjusting the drug exposure because of a shorter t½ could also be advantageous for use in combination with other checkpoint modulators or anti-cancer agents. Peptide antagonist AUR-012, constructed with elements from human PD-1, displayed equipotent antagonism towards PD-L1 and PD-L2 with potent activity in rescue of lymphocyte proliferation and effector functions. Rescue of proliferation of immune cells analyzed upon stimulation with anti-CD3/anti-CD-28 indicated a complete rescue of CD4+ and CD8+ T cells. Interestingly, the proliferation of CD4+, Foxp3+ T cells was completely abolished with AUR-012 treatment indicating a complete suppression of regulatory T cells. Sustained activation of circulatory immune cells and their ability to secrete IFN-γ up to 72 h indicate that pharmacodynamic effects persist even after the clearance of AUR-012 in animal models, thus supporting a dosing interval of up to 3 days. In models of melanoma, breast, kidney and colon cancers, AUR-012 showed efficacy in inhibition of both primary tumor growth and metastasis. Additionally, anti-tumor activity of AUR-012 in a pre-established CT26 model correlated well with pharmacodynamic effects as indicated by intratumoral recruitment of CD4+ and CD8+ T cells, and a reduction in PD1+ T cells (both CD4+ & CD8+) in tumor and blood. In 14-day repeated dose toxicity studies, AUR -012 was well tolerated at 100x of the efficacious doses. These findings demonstrating equipotent antagonism of both PD-L1 and PD-L2 signaling and the observed correlation between anti-tumor activities with the modulation of specific T-cell populations support further development of AUR-012 in the clinic.


Cancer Research | 2017

Abstract 1650: Targeting CD47- SIRPα interaction by novel peptide-based antagonists

Pottayil Govindan Nair Sasikumar; Chennakrishnareddy Gundala; Nagaraj M. Gowda; Sudarshan S. Naremaddepalli; Archana Bhumireddy; Rashmi Nair; Wesley Roy Balasubramanian; Anirudha Lakshminarasimhan; Samiulla S. Dodheri; Kiran Aithal; Raghuveer Ramachandra; Girish Daginakatte; Murali Ramachandra

Background: Cluster of differentiation (CD47) is a trans-membrane glycosylated protein which is upregulated in several cancers. Increased expression of CD47 on tumor cells is associated with immune evasion and cancer progression. CD47 through its interaction with signal regulatory protein alpha (SIRPα), a cell-surface molecule on macrophages inhibits phagocytosis of tumor cells. Disrupting CD47-SIRPα interactions by monoclonal antibodies targeting CD47 and recombinant SIRPα proteins have been used as therapeutic strategies for treating cancer. Our objective was to discover and develop peptide/peptidomimetic based CD47 antagonists for disrupting CD47-SIRPα interactions. Methods: Through rational design based on crystal structure of CD47/SIRPα interacting interface, we designed peptides having potential to disrupt CD47-SIRPα interactions. FACS based cellular binding assay was developed to assess the binding affinity of CD47 antagonists. SIRPα protein labelled with fluorescent dye was incubated with Jurkat T cells expressing high levels of CD47 in the presence/absence of peptides. Binding affinity was measured by decrease in fluorescence. Functional activity of the peptides was evaluated in a FACS-based phagocytosis assays, in which tumor cells were incubated with human/mouse macrophages in the presence/absence of CD47 antagonists. Results: We identified CD47 antagonists demonstrating disruption of CD47-SIRPα interaction in a cellular binding assay. These peptides significantly inhibited phagocytosis of different tumor cells by macrophages. The lead CD47 antagonist displaying good ADME properties including moderate oral bioavailability was evaluated in a B16F10 syngeneic mouse tumor model. The lead CD47 antagonist inhibited primary tumor growth as well tumor metastasis to lungs. Biomarker characterization and efficacy studies in additional tumor models are ongoing. Citation Format: Pottayil G. Sasikumar, Chennakrishnareddy Gundala, Nagaraj M. Gowda, Sudarshan S. Naremaddepalli, Archana Bhumireddy, Rashmi Nair, Wesley Roy Balasubramanian, Anirudha Lakshminarasimhan, Samiulla S. Dodheri, Kiran Aithal, Raghuveer K. Ramachandra, Girish Daginakatte, Murali Ramachandra. Targeting CD47- SIRPα interaction by novel peptide-based antagonists [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1650. doi:10.1158/1538-7445.AM2017-1650

Collaboration


Dive into the Murali Ramachandra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Girish Daginakatte

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge