Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muralikrishnan Dhanasekaran is active.

Publication


Featured researches published by Muralikrishnan Dhanasekaran.


Experimental Neurology | 2008

Amyloid beta peptides and glutamatergic synaptic dysregulation

Kodeeswaran Parameshwaran; Muralikrishnan Dhanasekaran; Vishnu Suppiramaniam

Alzheimers disease (AD) is a major neurodegenerative disorder in which overproduction and accumulation of amyloid beta (Abeta) peptides result in synaptic dysfunction. Recent reports strongly suggest that in the initial stages of AD glutamate receptors are dysregulated by Abeta accumulation resulting in disruption of glutamatergic synaptic transmission which parallels early cognitive deficits. In the presence of Abeta, 2-amino-3-(3-hydoxy-5-methylisoxazol-4-yl) propionic acid (AMPA) glutamate receptor function is disrupted and the surface expression is reduced. Abeta has also been shown to modulate N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors. The Abeta mediated glutamate receptor modifications can lead to synaptic dysfunction resulting in excitotoxic neurodegeneration during the progression of AD. This review discusses the recent findings that glutamatergic signaling could be compromised by Abeta induced modulation of synaptic glutamate receptors in specific brain regions.


Neurobiology of Aging | 2012

Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents

Brian C. Shonesy; Kariharan Thiruchelvam; Kodeeswaran Parameshwaran; Engy Abdel Rahman; Senthilkumar S. Karuppagounder; Kevin W. Huggins; Carl A. Pinkert; Rajesh Amin; Muralikrishnan Dhanasekaran; Vishnu Suppiramaniam

To better understand the role of insulin signaling in the development of Alzheimers disease (AD), we utilized an animal model (intracerebroventricular injection of streptozotocin-ic-streptozotocin (STZ)) that displays insulin resistance only in the brain and exhibits AD pathology. In this model, deficits in hippocampal synaptic transmission and long-term potentiation (LTP) were observed. The decline in LTP correlated with decreased expression of NMDAR subunits NR2A and NR2B. The deficits in LTP were accompanied by changes in the expression and function of synaptic AMPARs. In ic-STZ animals, an alteration in integrin-linked kinase (ILK)-glycogen synthase kinase 3 beta (GSK-3-β) signaling was identified (p < 0.05). Similarly, there was decreased expression (p < 0.05) of brain derived neurotropic factor (BDNF) and stargazin, an AMPAR auxiliary subunit; both are required for driving AMPA receptors to the surface of the postsynaptic membrane. Our data illustrate that altered ILK-GSK-3β signaling due to impaired insulin signaling may decrease the trafficking and function of postsynaptic glutamate receptors; thereby, leading to synaptic deficits contributing to memory loss.


Neurochemical Research | 2010

Neurotoxic Effects of Methamphetamine

Bessy Thrash; Senthilkumar S. Karuppagounder; Subramaniam Uthayathas; Vishnu Suppiramaniam; Muralikrishnan Dhanasekaran

In Parkinson’s disease, depletion of dopamine in the striatum leads to various symptoms such as tremor, rigidity and akinesia. Methamphetamine use has significantly increased in USA and around the world and there are several reports showing that its long-term use increases the risk for dopamine depletion. However, the toxic mechanisms of methamphetamine are not well understood. This study was undertaken to gain greater mechanistic understanding of the toxicity induced by methamphetamine. We evaluated the effect of methamphetamine on the generation of reactive oxygen species, mitochondrial monoamine oxidase, complex I & IV activities. Behavioral analysis evaluated the effect on catalepsy, akinesia and swim score. Neurotransmitter levels were evaluated using high pressure liquid chromatography (HPLC) electrochemical detection (ECD). Results showed that methamphetamine caused significant generation of reactive oxygen species and decreased complex I activity in the mitochondria leading to dopamine depletion in the striatum.


Life Sciences | 2014

Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500

Mengyuan Zheng; Manuj Ahuja; Dwipayan Bhattacharya; T. Prabhakar Clement; Joel S. Hayworth; Muralikrishnan Dhanasekaran

AIMS The British Petroleum (BP) oil spill has raised several ecological and health concerns. As the first response, BP used a chemical dispersant, Corexit-9500, to disperse the crude oil in the Gulf of Mexico to limit shoreline contamination problems. Nevertheless, portions of this oil/Corexit mixture reached the shoreline and still remain in various Gulf shore environments. The use of Corexit itself has become a significant concern since its impacts on human health and environment is unclear. MAIN METHODS In this study, in vitro cytotoxic effects of Corexit were evaluated using different mammalian cells. KEY FINDINGS Under serum free conditions, the LC50 value for Corexit in BL16/BL6 cell was 16 ppm, in 1321N1 cell was 33 ppm, in H19-7 cell was 70 ppm, in HEK293 was 93 ppm, and in HK-2 cell was 95 ppm. With regard to the mechanisms of cytotoxicity, we hypothesize that Corexit can possibly induce cytotoxicity in mammalian cells by altering the intracellular oxidative balance and inhibiting mitochondrial functions. Corexit induced increased reactive oxygen species and lipid peroxide levels; also, it depleted glutathione content and altered catalase activity in H19-7 cells. In addition, there was mitochondrial complex-I inhibition and increase in the pro-apoptotic factors including caspase-3 and BAX expression. SIGNIFICANCE The experimental results show changes in intracellular oxidative radicals leading to mitochondrial dysfunctions and apoptosis in Corexit treatments, possibly contributing to cell death. Our findings raise concerns about using large volumes of Corexit, a potential environmental toxin, in sensitive ocean environments.


Brain Research | 2006

Ebselen effects on MPTP-induced neurotoxicity.

Muralikrishnan Dhanasekaran; Subramaniam Uthayathas; Senthilkumar S. Karuppagounder; Kodeeswaran Parameshwaran; Vishnu Suppiramaniam; Manuchair Ebadi; Holly M. Brown-Borg

We evaluated the effect of ebselen on human SH-SY5Y dopaminergic neuronal cells and determined whether ebselen, a glutathione peroxidase-mimetic, protected against MPTP-induced dopamine depletion in mice. Ebselen (10-100 microM) inhibited the proliferation of SH-SY5Y cells dose-dependently. Ebselen did not induce any behavioral changes and did not block MPTP-induced tremor and akinesia. Ebselen had no effect on the monoamine oxidase activity and did not protect against MPTP-induced dopamine depletion in striatum.


PLOS ONE | 2012

Selective cholinergic depletion in medial septum leads to impaired long term potentiation and glutamatergic synaptic currents in the hippocampus.

Patrick Kanju; Kodeeswaran Parameshwaran; Catrina Sims-Robinson; Subramaniam Uthayathas; Eleanor M. Josephson; Nagalingam Rajakumar; Muralikrishnan Dhanasekaran; Vishnu Suppiramaniam

Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.


Life Sciences | 2016

Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid

Bessy Thrash-Williams; Senthilkumar S. Karuppagounder; Dwipayan Bhattacharya; Manuj Ahuja; Vishnu Suppiramaniam; Muralikrishnan Dhanasekaran

AIMS Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. MAIN METHODS The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. KEY FINDINGS Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. SIGNIFICANCE One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinsons disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse.


Life Sciences | 2014

Elucidating the neurotoxic effects of MDMA and its analogs

Senthilkumar S. Karuppagounder; Dwipayan Bhattacharya; Manuj Ahuja; Vishnu Suppiramaniam; Jack DeRuiter; Randall Clark; Muralikrishnan Dhanasekaran

AIMS There is a rapid increase in the use of methylenedioxymethamphetamine (MDMA) and its structural congeners/analogs globally. MDMA and MDMA-analogs have been synthesized illegally in furtive dwellings and are abused due to its addictive potential. Furthermore, MDMA and MDMA-analogs have shown to have induced several adverse effects. Hence, understanding the mechanisms mediating this neurotoxic insult of MDMA-analogs is of immense importance for the public health in the world. MAIN METHODS We synthesized and investigated the neurotoxic effects of MDMA and its analogs [4-methylenedioxyamphetamine (MDA), 2, 6-methylenedioxyamphetamine (MDMA), and N-ethyl-3, 4-methylenedioxyamphetamine (MDEA)]. The stimulatory or the dopaminergic agonist effects of MDMA and MDMA-analogs were elucidated using the established 6-hydroxydopamine lesioned animal model. Additionally, we also investigated the neurotoxic mechanisms of MDMA and MDMA-analogs on mitochondrial complex-I activity and reactive oxygen species generation. KEY FINDINGS MDMA and MDMA-analogs exhibited stimulatory activity as compared to amphetamines and also induced several behavioral changes in the rodents. MDMA and MDMA-analogs enhanced the reactive oxygen generation and inhibited mitochondrial complex-I activity which can lead to neurodegeneration. Hence the mechanism of neurotoxicity, MDMA and MDMA-analogs can enhance the release of monoamines, alter the monoaminergic neurotransmission, and augment oxidative stress and mitochondrial abnormalities leading to neurotoxicity. SIGNIFICANCE Thus, our study will help in developing effective pharmacological and therapeutic approaches for the treatment of MDMA and MDMA-analog abuse.


Neurobiology of Learning and Memory | 2013

Long term alterations in synaptic physiology, expression of β2 nicotinic receptors and ERK1/2 signaling in the hippocampus of rats with prenatal nicotine exposure

Kodeeswaran Parameshwaran; Manal Buabeid; Subhrajit Bhattacharya; Subramaniam Uthayathas; Thiruchelvam Kariharan; Muralikrishnan Dhanasekaran; Vishnu Suppiramaniam

Smoking during pregnancy is associated with long lasting, hippocampus dependent, cognitive deficits in children. The current study was performed to investigate the effect of prenatal nicotine exposure on excitatory synaptic physiology and cellular signaling in the hippocampus using a rodent model. Excitatory synaptic physiology was analyzed using electrophysiological methods to detect changes in synaptic plasticity, excitatory synaptic transmission and synaptic currents mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) in the hippocampus. Additionally, western blot experiments were performed to quantify alterations in protein expression levels in the hippocampus. Prenatal nicotine exposure resulted in a decrease in long term potentiation (LTP) and an increase in long term depression (LTD). Basal synaptic transmission was also reduced with a concomitant decline in AMPAR mediated synaptic currents at the cellular and single channel levels. Presynaptic pool of vesicles docked close to release sites were also diminished in nicotine exposed rats. Moreover, reduced levels of β2 subunit containing nicotinic receptors and extracellular signal regulated kinase1/2 (ERK1/2) were observed in nicotine exposed rats. These results suggest that long lasting alterations in excitatory synaptic physiology, AMPAR synaptic currents and ERK1/2 signaling may serve as the molecular mechanisms for cognitive deficits associated with prenatal nicotine exposure.


Toxicology Letters | 2014

Bisphenol A regulation of testicular endocrine function in male rats is affected by diet

Manjunatha K. Nanjappa; Manuj Ahuja; Muralikrishnan Dhanasekaran; Elaine S. Coleman; Tim D. Braden; Frank F. Bartol; R. Curtis Bird; Desiree Wanders; Robert L. Judd; Benson T. Akingbemi

There is concern that early-life exposure to bisphenol A (BPA) may alter developmental programming and predispose individuals to obesity and reproductive anomalies. The present study was designed to determine if a high fat diet at sexual maturation moderates testicular toxicity occasioned by exposure to BPA during reproductive development. Therefore, male rats were exposed to BPA by maternal gavage (0, 2.5 or 25 μg/kg body weight/day) from gestational day 12 to postnatal day 21. At weaning, control and BPA-exposed animals were placed on a regular normal fat diet (NFD) until 70 days of age when they were continued on the NFD or were maintained on a high fat diet (HFD) until euthanasia at 98 days. Adult male rats maintained on HFD were generally heavier than NFD animals due to greater energy intake but energy intake per unit body weight gain was similar in all animals. However, perinatal exposure to BPA decreased (P<0.05) serum adiponectin as well as adiponectin and AdipoR2 protein expression levels in Leydig cells. Importantly, the combination of BPA exposure and HFD consumption promoted lipid peroxidation evidenced by elevated serum thiobarbituric acid reactive substances and glutathione concentrations. These findings imply that interaction between BPA and HFD potentially causes testicular dysfunction to a greater degree than would be due to BPA exposure or HFD consumption. Given the relationship that exists between energy homeostasis and reproductive activity, additional studies are warranted to investigate the consequences of BPA-diet interactions on testicular function.

Collaboration


Dive into the Muralikrishnan Dhanasekaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge