Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Murat Dundar is active.

Publication


Featured researches published by Murat Dundar.


international conference on machine learning | 2008

Bayesian multiple instance learning: automatic feature selection and inductive transfer

Vikas C. Raykar; Balaji Krishnapuram; Jinbo Bi; Murat Dundar; R. Bharat Rao

We propose a novel Bayesian multiple instance learning (MIL) algorithm. This algorithm automatically identifies the relevant feature subset, and utilizes inductive transfer when learning multiple (conceptually related) classifiers. Experimental results indicate that the proposed MIL method is more accurate than previous MIL algorithms and selects a much smaller set of useful features. Inductive transfer further improves the accuracy of the classifier as compared to learning each task individually.


IEEE Transactions on Medical Imaging | 2015

Towards Large-Scale Histopathological Image Analysis: Hashing-Based Image Retrieval

Xiaofan Zhang; Wei Liu; Murat Dundar; Sunil Badve; Shaoting Zhang

Automatic analysis of histopathological images has been widely utilized leveraging computational image-processing methods and modern machine learning techniques. Both computer-aided diagnosis (CAD) and content-based image-retrieval (CBIR) systems have been successfully developed for diagnosis, disease detection, and decision support in this area. Recently, with the ever-increasing amount of annotated medical data, large-scale and data-driven methods have emerged to offer a promise of bridging the semantic gap between images and diagnostic information. In this paper, we focus on developing scalable image-retrieval techniques to cope intelligently with massive histopathological images. Specifically, we present a supervised kernel hashing technique which leverages a small amount of supervised information in learning to compress a 10 \thinspace000-dimensional image feature vector into only tens of binary bits with the informative signatures preserved. These binary codes are then indexed into a hash table that enables real-time retrieval of images in a large database. Critically, the supervised information is employed to bridge the semantic gap between low-level image features and high-level diagnostic information. We build a scalable image-retrieval framework based on the supervised hashing technique and validate its performance on several thousand histopathological images acquired from breast microscopic tissues. Extensive evaluations are carried out in terms of image classification (i.e., benign versus actionable categorization) and retrieval tests. Our framework achieves about 88.1% classification accuracy as well as promising time efficiency. For example, the framework can execute around 800 queries in only 0.01 s, comparing favorably with other commonly used dimensionality reduction and feature selection methods.


IEEE Transactions on Biomedical Engineering | 2011

Computerized classification of intraductal breast lesions using histopathological images

Murat Dundar; Sunil Badve; Gokhan Bilgin; Vikas C. Raykar; Rohit K. Jain; Olcay Sertel; Metin N. Gurcan

In the diagnosis of preinvasive breast cancer, some of the intraductal proliferations pose a special challenge. The continuum of intraductal breast lesions includes the usual ductal hyperplasia (UDH), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS). The current standard of care is to perform percutaneous needle biopsies for diagnosis of palpable and image-detected breast abnormalities. UDH is considered benign and patients diagnosed UDH undergo routine follow-up, whereas ADH and DCIS are considered actionable and patients diagnosed with these two subtypes get additional surgical procedures. About 250 000 new cases of intraductal breast lesions are diagnosed every year. A conservative estimate would suggest that at least 50% of these patients are needlessly undergoing unnecessary surgeries. Thus, improvement in the diagnostic reproducibility and accuracy is critically important for effective clinical management of these patients. In this study, a prototype system for automatically classifying breast microscopic tissues to distinguish between UDH and actionable subtypes (ADH and DCIS) is introduced. This system automatically evaluates digitized slides of tissues for certain cytological criteria and classifies the tissues based on the quantitative features derived from the images. The system is trained using a total of 327 regions of interest (ROIs) collected across 62 patient cases and tested with a sequestered set of 149 ROIs collected across 33 patient cases. An overall accuracy of 87.9% is achieved on the entire test data. The test accuracy of 84.6% is obtained with borderline cases (26 of the 33 test cases) only, when compared against the diagnostic accuracies of nine pathologists on the same set (81.2% average), indicates that the system is highly competitive with the expert pathologists as a stand-alone diagnostic tool and has a great potential in improving diagnostic accuracy and reproducibility when used as a “second reader” in conjunction with the pathologists.


IEEE Transactions on Geoscience and Remote Sensing | 2002

A model-based mixture-supervised classification approach in hyperspectral data analysis

Murat Dundar; David A. Landgrebe

It is well known that there is a strong relation between class definition precision and classification accuracy in pattern classification applications. In hyperspectral data analysis, usually classes of interest contain one or more components and may not be well represented by a single Gaussian density function. In this paper, a model-based mixture classifier, which uses mixture models to characterize class densities, is discussed. However, a key outstanding problem of this approach is how to choose the number of components and determine their parameters for such models in practice, and to do so in the face of limited training sets where estimation error becomes a significant factor. The proposed classifier estimates the number of subclasses and class statistics simultaneously by choosing the best model. The structure of class covariances is also addressed through a model-based covariance estimation technique introduced in this paper.


european conference on machine learning | 2008

An Improved Multi-task Learning Approach with Applications in Medical Diagnosis

Jinbo Bi; Tao Xiong; Shipeng Yu; Murat Dundar; R. Bharat Rao

We propose a family of multi-task learning algorithms for collaborative computer aided diagnosis which aims to diagnose multiple clinically-related abnormal structures from medical images. Our formulations eliminate features irrelevant to all tasks, and identify discriminative features for each of the tasks. A probabilistic model is derived to justify the proposed learning formulations. By equivalence proof, some existing regularization-based methods can also be interpreted by our probabilistic model as imposing a Wishart hyperprior. Convergence analysis highlights the conditions under which the formulations achieve convexity and global convergence. Two real-world medical problems: lung cancer prognosis and heart wall motion analysis, are used to validate the proposed algorithms.


international conference on machine learning | 2004

A fast iterative algorithm for fisher discriminant using heterogeneous kernels

Glenn Fung; Murat Dundar; Jinbo Bi; R. Bharat Rao

We propose a fast iterative classification algorithm for Kernel Fisher Discriminant (KFD) using heterogeneous kernel models. In contrast with the standard KFD that requires the user to predefine a kernel function, we incorporate the task of choosing an appropriate kernel into the optimization problem to be solved. The choice of kernel is defined as a linear combination of kernels belonging to a potentially large family of different positive semidefinite kernels. The complexity of our algorithm does not increase significantly with respect to the number of kernels on the kernel family. Experiments on several benchmark datasets demonstrate that generalization performance of the proposed algorithm is not significantly different from that achieved by the standard KFD in which the kernel parameters have been tuned using cross validation. We also present results on a real-life colon cancer dataset that demonstrate the efficiency of the proposed method.


IEEE Transactions on Geoscience and Remote Sensing | 2004

Toward an optimal supervised classifier for the analysis of hyperspectral data

Murat Dundar; David A. Landgrebe

In this paper, we propose a supervised classifier based on implementation of the Bayes rule with kernels. The proposed technique first proposes an implicit nonlinear transformation of the data into a feature space seeking to fit normal distributions having a common covariance matrix onto the mapped data. One requirement of this approach is the evaluation of posterior probabilities. We express the discriminant function in dot-product form, and then apply the kernel concept to efficiently evaluate the posterior probabilities. The proposed technique gives the flexibility required to model complex data structures that originate from a wide range of class-conditional distributions. Although we end up with piecewise linear decision boundaries in the feature space, these corresponds to powerful nonlinear boundaries in the original input space. For the data we considered, we have obtained some encouraging results.


computer vision and pattern recognition | 2007

Joint Optimization of Cascaded Classifiers for Computer Aided Detection

Murat Dundar; Jinbo Bi

The existing methods for offline training of cascade classifiers take a greedy search to optimize individual classifiers in the cascade, leading inefficient overall performance. We propose a new design of the cascaded classifier where all classifiers are optimized for the final objective function. The key contribution of this paper is the AND-OR framework for learning the classifiers in the cascade. In earlier work each classifier is trained independently using the examples labeled as positive by the previous classifiers in the cascade, and optimized to have the best performance for that specific local stage. The proposed approach takes into account the fact that an example is classified as positive by the cascade if it is labeled as positive by all the stages and it is classified as negative if it is rejected at any stage in the cascade. An offline training scheme is introduced based on the joint optimization of the classifiers in the cascade to minimize an overall objective function. We apply the proposed approach to the problem of automatically detecting polyps from multi-slice CT images. Our approach significantly speeds up the execution of the computer aided detection (CAD) system while yielding comparable performance with the current state-of-the-art, and also demonstrates favorable results over cascade AdaBoost both in terms of performance and online execution speed.


IEEE Transactions on Geoscience and Remote Sensing | 2004

A cost-effective semisupervised classifier approach with kernels

Murat Dundar; David A. Landgrebe

In this paper, we propose a cost-effective iterative semisupervised classifier based on a kernel concept. The proposed technique incorporates unlabeled data into the design of a binary classifier by introducing and optimizing a cost function in a feature space that maximizes the Rayleigh coefficient while minimizing the total cost associated with misclassified labeled samples. The cost assigned to misclassified labeled samples accounts for the number of misclassified labeled samples as well as the amount by which they are on the wrong side of the boundary, and this counterbalances any potential adverse effect of unlabeled data on the classifier performance. Several experiments performed with remotely sensed data demonstrate that using the proposed semisupervised classifier shows considerable improvements over the supervised-only counterpart.


Cytometry Part A | 2010

Discovering the unknown: detection of emerging pathogens using a label-free light-scattering system

Bartek Rajwa; Murat Dundar; Ferit Akova; Amanda Bettasso; Valery Patsekin; E. Dan Hirleman; Arun K. Bhunia; J. Paul Robinson

A recently introduced technique for pathogen recognition called BARDOT (BActeria Rapid Detection using Optical scattering Technology) belongs to the broad class of optical sensors and relies on forward‐scatter phenotyping (FSP). The specificity of FSP derives from the morphological information that bacterial material encodes on a coherent optical wavefront passing through the colony. The system collects elastically scattered light patterns that, given a constant environment, are unique to each bacterial species and serovar. The notable similarity between FSP technology and spectroscopies is their reliance on statistical machine learning to perform recognition. Currently used methods utilize traditional supervised techniques which assume completeness of training libraries. However, this restrictive assumption is known to be false for most experimental conditions, resulting in unsatisfactory levels of accuracy, poor specificity, and consequently limited overall performance for biodetection and classification tasks. The presented work demonstrates application of the BARDOT system to classify bacteria belonging to the Salmonella class in a nonexhaustive framework, that is, without full knowledge about all the possible classes that can be encountered. Our study uses a Bayesian approach to learning with a nonexhaustive training dataset to allow for the automated detection of unknown bacterial classes.

Collaboration


Dive into the Murat Dundar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinbo Bi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge