Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Muriel Dietrich is active.

Publication


Featured researches published by Muriel Dietrich.


PLOS Pathogens | 2015

The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii

Olivier Duron; Valérie Noël; Karen D. McCoy; Matteo Bonazzi; Karim Sidi-Boumedine; Olivier Morel; Fabrice Vavre; Lionel Zenner; Elsa Jourdain; Patrick Durand; Céline Arnathau; François Renaud; Jean-François Trape; Abel S. Biguezoton; Julie Cremaschi; Muriel Dietrich; Elsa Léger; Anaïs Appelgren; Marlène Dupraz; Elena Gómez-Díaz; Georges Diatta; Guiguigbaza-Kossigan Dayo; Hassane Adakal; Sébastien Zoungrana; Laurence Vial; Christine Chevillon

Q fever is a highly infectious disease with a worldwide distribution. Its causative agent, the intracellular bacterium Coxiella burnetii, infects a variety of vertebrate species, including humans. Its evolutionary origin remains almost entirely unknown and uncertainty persists regarding the identity and lifestyle of its ancestors. A few tick species were recently found to harbor maternally-inherited Coxiella-like organisms engaged in symbiotic interactions, but their relationships to the Q fever pathogen remain unclear. Here, we extensively sampled ticks, identifying new and atypical Coxiella strains from 40 of 58 examined species, and used this data to infer the evolutionary processes leading to the emergence of C. burnetii. Phylogenetic analyses of multi-locus typing and whole-genome sequencing data revealed that Coxiella-like organisms represent an ancient and monophyletic group allied to ticks. Remarkably, all known C. burnetii strains originate within this group and are the descendants of a Coxiella-like progenitor hosted by ticks. Using both colony-reared and field-collected gravid females, we further establish the presence of highly efficient maternal transmission of these Coxiella-like organisms in four examined tick species, a pattern coherent with an endosymbiotic lifestyle. Our laboratory culture assays also showed that these Coxiella-like organisms were not amenable to culture in the vertebrate cell environment, suggesting different metabolic requirements compared to C. burnetii. Altogether, this corpus of data demonstrates that C. burnetii recently evolved from an inherited symbiont of ticks which succeeded in infecting vertebrate cells, likely by the acquisition of novel virulence factors.


Vector-borne and Zoonotic Diseases | 2011

Worldwide distribution and diversity of seabird ticks : implications for the ecology and epidemiology of tick-borne pathogens

Muriel Dietrich; Elena Gómez-Díaz; Karen D. McCoy

The ubiquity of ticks and their importance in the transmission of pathogens involved in human and livestock diseases are reflected by the growing number of studies focusing on tick ecology and the epidemiology of tick-borne pathogens. Likewise, the involvement of wild birds in dispersing pathogens and their role as reservoir hosts are now well established. However, studies on tick-bird systems have mainly focused on land birds, and the role of seabirds in the ecology and epidemiology of tick-borne pathogens is rarely considered. Seabirds typically have large population sizes, wide geographic distributions, and high mobility, which make them significant potential players in the maintenance and dispersal of disease agents at large spatial scales. They are parasitized by at least 29 tick species found across all biogeographical regions of the world. We know that these seabird-tick systems can harbor a large diversity of pathogens, although detailed studies of this diversity remain scarce. In this article, we review current knowledge on the diversity and global distribution of ticks and tick-borne pathogens associated with seabirds. We discuss the relationship between seabirds, ticks, and their pathogens and examine the interesting characteristics of these relationships from ecological and epidemiological points of view. We also highlight some future research directions required to better understand the evolution of these systems and to assess the potential role of seabirds in the epidemiology of tick-borne pathogens.


Frontiers in Cellular and Infection Microbiology | 2013

Host specialization in ticks and transmission of tick-borne diseases: a review

Karen Denise Mccoy; Elsa Léger; Muriel Dietrich

Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.


Molecular Ecology | 2014

Diversification of an emerging pathogen in a biodiversity hotspot: Leptospira in endemic small mammals of Madagascar

Muriel Dietrich; David A. Wilkinson; Voahangy Soarimalala; Steven M. Goodman; Koussay Dellagi; Pablo Tortosa

Biodiversity hotspots and associated endemism are ideal systems for the study of parasite diversity within host communities. Here, we investigated the ecological and evolutionary forces acting on the diversification of an emerging bacterial pathogen, Leptospira spp., in communities of endemic Malagasy small mammals. We determined the infection rate with pathogenic Leptospira in 20 species of sympatric rodents (subfamily Nesomyinae) and tenrecids (family Tenrecidae) at two eastern humid forest localities. A multilocus genotyping analysis allowed the characterization of bacterial diversity within small mammals and gave insights into their genetic relationships with Leptospira infecting endemic Malagasy bats (family Miniopteridae and Vespertilionidae). We report for the first time the presence of pathogenic Leptospira in Malagasy endemic small mammals, with an overall prevalence of 13%. In addition, these hosts harbour species of Leptospira (L. kirschneri, L. borgpetersenii and L. borgpetersenii group B) which are different from those reported in introduced rats (L. interrogans) on Madagascar. The diversification of Leptospira on Madagascar can be traced millions of years into evolutionary history, resulting in the divergence of endemic lineages and strong host specificity. These observations are discussed in relation to the relative roles of endemic vs. introduced mammal species in the evolution and epidemiology of Leptospira on Madagascar, specifically how biodiversity and biogeographical processes can shape community ecology of an emerging pathogen and lead to its diversification within native animal communities.


Emerging Infectious Diseases | 2012

Pathogenic Leptospira spp. in bats, Madagascar and Union of the Comoros.

Erwan Lagadec; Yann Gomard; Vanina Guernier; Muriel Dietrich; Hervé Pascalis; Sarah Temmam; Beza Ramasindrazana; Steven M. Goodman; Pablo Tortosa; Koussay Dellagi

[Extract] To the Editor: Leptospirosis is a zoonosis of global distribution; incidence rates are particularly high in tropical areas (1). Leptospirosis is a major public health problem on islands in the southwestern Indian Ocean, particularly La Reunion, Mayotte, and the Seychelles (where incidence rates are among the highest in the world) (1). In contrast, no human case has been reported on the nearby islands of Madagascar and Union of the Comoros. However, the recent demonstration of pathogenic Leptospira spp. in small mammals introduced to Madagascar suggests possible transmission from free-living animals to humans (2).


Journal of Virology | 2014

Highly diverse morbillivirus-related paramyxoviruses in wild fauna of the southwestern Indian Ocean Islands: evidence of exchange between introduced and endemic small mammals.

David A. Wilkinson; Julien Mélade; Muriel Dietrich; Beza Ramasindrazana; Voahangy Soarimalala; Erwan Lagadec; Gildas Le Minter; Pablo Tortosa; Jean-Michel Heraud; Xavier de Lamballerie; Steven M. Goodman; Koussay Dellagi; Hervé Pascalis

ABSTRACT The Paramyxoviridae form an increasingly diverse viral family, infecting a wide variety of different hosts. In recent years, they have been linked to disease emergence in many different animal populations and in humans. Bats and rodents have been identified as major animal populations capable of harboring paramyxoviruses, and host shifting between these animals is likely to be an important driving factor in the underlying evolutionary processes that eventually lead to disease emergence. Here, we have studied paramyxovirus circulation within populations of endemic and introduced wild small mammals of the southwestern Indian Ocean region and belonging to four taxonomic orders: Rodentia, Afrosoricida, Soricomorpha, and Chiroptera. We report elevated infection levels as well as widespread paramyxovirus dispersal and frequent host exchange of a newly emerging genus of the Paramyxoviridae, currently referred to as the unclassified morbillivirus-related viruses (UMRVs). In contrast to other genera of the Paramyxoviridae, where bats have been shown to be a key host species, we show that rodents (and, in particular, Rattus rattus) are significant spreaders of UMRVs. We predict that the ecological particularities of the southwestern Indian Ocean, where small mammal species often live in densely packed, multispecies communities, in combination with the increasing invasion of R. rattus and perturbations of endemic animal communities by active anthropological development, will have a major influence on the dynamics of UMRV infection. IMPORTANCE Identification of the infectious agents that circulate within wild animal reservoirs is essential for several reasons: (i) infectious disease outbreaks often originate from wild fauna; (ii) anthropological expansion increases the risk of contact between human and animal populations and, as a result, the risk of disease emergence; (iii) evaluation of pathogen reservoirs helps in elaborating preventive measures to limit the risk of disease emergence. Many paramyxoviruses for which bats and rodents serve as major reservoirs have demonstrated their potential to cause disease in humans and animals. In the context of the biodiversity hot spot of southwestern Indian Ocean islands and their rich endemic fauna, we show that highly diverse UMRVs exchange between various endemic animal species, and their dissemination likely is facilitated by the introduced Rattus rattus. Hence, many members of the Paramyxoviridae appear well adapted for the study of the viral phylodynamics that may be associated with disease emergence.


Avian Diseases | 2010

Avian Influenza Circulation in the Camargue (South of France) During the 2006–07 Season

Camille Lebarbenchon; Chung-Ming Chang; Viviane Grandhomme; Muriel Dietrich; Yves Kayser; Eric Elguero; François Renaud; Frédéric Thomas; Sylvie van der Werf; Michel Gauthier-Clerc

Abstract Situated at the crossroads of numerous migratory routes of Palaearctic birds, the Camargue is considered a high-risk area for the introduction and transmission of numerous avian-borne pathogens. We investigated the epidemiologic cycles of avian influenza viruses (AIVs) in the local bird community by performing regular sampling on a large variety of bird species during 11 consecutive months in 2006–07. To detect the presence of AIV, SYBR green reverse transcriptase–PCR targeting the M gene was performed on 2901 samples from 66 bird species. A clear seasonal pattern of AIV circulation in ducks was observed during autumn and winter, with higher prevalence rates in early fall. Our results also support an absence of circulation of AIV in passerine birds during spring and the wintering periods. Finally, even if the prevalence of infection was very low, AIVs were found in gulls in breeding colonies, indicating a possible specific circulation in spring in these birds.


Applied and Environmental Microbiology | 2014

Massive infection of seabird ticks with bacterial species related to Coxiella burnetii.

David A. Wilkinson; Muriel Dietrich; Camille Lebarbenchon; Audrey Jaeger; Céline Le Rouzic; Matthieu Bastien; Erwan Lagadec; Karen D. McCoy; Hervé Pascalis; Matthieu Le Corre; Koussay Dellagi; Pablo Tortosa

ABSTRACT Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch.


Emerging Infectious Diseases | 2014

Rickettsia spp. in seabird ticks from western Indian Ocean islands, 2011-2012.

Muriel Dietrich; Camille Lebarbenchon; Audrey Jaeger; Céline Le Rouzic; Matthieu Bastien; Erwan Lagadec; Karen D. McCoy; Hervé Pascalis; Matthieu Le Corre; Koussay Dellagi; Pablo Tortosa

We found a diversity of Rickettsia spp. in seabird ticks from 6 tropical islands. The bacteria showed strong host specificity and sequence similarity with strains in other regions. Seabird ticks may be key reservoirs for pathogenic Rickettsia spp., and bird hosts may have a role in dispersing ticks and tick-associated infectious agents over large distances.


PLOS ONE | 2016

Diversity of Bartonella and Rickettsia spp. in Bats and Their Blood-Feeding Ectoparasites from South Africa and Swaziland

Muriel Dietrich; Mabotse A. Tjale; Jacqueline Weyer; Teresa Kearney; Ernest C. J. Seamark; Louis Hendrik Nel; Ara Monadjem; Wanda Markotter

In addition to several emerging viruses, bats have been reported to host multiple bacteria but their zoonotic threats remain poorly understood, especially in Africa where the diversity of bats is important. Here, we investigated the presence and diversity of Bartonella and Rickettsia spp. in bats and their ectoparasites (Diptera and Siphonaptera) collected across South Africa and Swaziland. We collected 384 blood samples and 14 ectoparasites across 29 different bat species and found positive samples in four insectivorous and two frugivorous bat species, as well as their Nycteribiidae flies. Phylogenetic analyses revealed diverse Bartonella genotypes and one main group of Rickettsia, distinct from those previously reported in bats and their ectoparasites, and for some closely related to human pathogens. Our results suggest a differential pattern of host specificity depending on bat species. Bartonella spp. identified in bat flies and blood were identical supporting that bat flies may serve as vectors. Our results represent the first report of bat-borne Bartonella and Rickettsia spp. in these countries and highlight the potential role of bats as reservoirs of human bacterial pathogens.

Collaboration


Dive into the Muriel Dietrich's collaboration.

Top Co-Authors

Avatar

Koussay Dellagi

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Erwan Lagadec

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Karen D. McCoy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Tortosa

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar

Hervé Pascalis

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Thierry Boulinier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Jaeger

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge