Muriel Jager
Pierre-and-Marie-Curie University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Muriel Jager.
Journal of Molecular Evolution | 2002
Sana Bachali; Muriel Jager; Alexandre Hassanin; Françoise Schoentgen; Pierre Jollès; Aline Fiala-Médioni; Jean S. Deutsch
Abstract. We isolated and sequenced the cDNAs coding for lysozymes of six bivalve species. Alignment and phylogenetic analysis showed that, together with recently described bivalve lysozymes, the leech destabilase, and a number of putative proteins from extensive genomic and cDNA analyses, they belong to the invertebrate type of lysozymes (i type), first described by Jollès and Jollès (1975). We determined the genomic structure of the gene encoding the lysozyme of Mytilus edulis, the common mussel. We provide evidence that the central exon of this gene is homologous to the second exon of the chicken lysozyme gene, belonging to the c type. We propose that the origin of this domain can be traced back in evolution to the origin of bilaterian animals. Phylogenetic analysis suggests that i-type proteins form a monophyletic family.
Developmental Biology | 2011
Alexandre Alié; Lucas Leclère; Muriel Jager; Cyrielle Dayraud; Patrick Chang; Hervé Le Guyader; Eric Quéinnec; Michaël Manuel
Stem cells are essential for animal development and adult tissue homeostasis, and the quest for an ancestral gene fingerprint of stemness is a major challenge for evolutionary developmental biology. Recent studies have indicated that a series of genes, including the transposon silencer Piwi and the translational activator Vasa, specifically involved in germline determination and maintenance in classical bilaterian models (e.g., vertebrates, fly, nematode), are more generally expressed in adult multipotent stem cells in other animals like flatworms and hydras. Since the progeny of these multipotent stem cells includes both somatic and germinal derivatives, it remains unclear whether Vasa, Piwi, and associated genes like Bruno and PL10 were ancestrally linked to stemness, or to germinal potential. We have investigated the expression of Vasa, two Piwi paralogues, Bruno and PL10 in Pleurobrachia pileus, a member of the early-diverging phylum Ctenophora, the probable sister group of cnidarians. These genes were all expressed in the male and female germlines, and with the exception of one of the Piwi paralogues, they showed similar expression patterns within somatic territories (tentacle root, comb rows, aboral sensory complex). Cytological observations and EdU DNA-labelling and long-term retention experiments revealed concentrations of stem cells closely matching these gene expression areas. These stem cell pools are spatially restricted, and each specialised in the production of particular types of somatic cells. These data unveil important aspects of cell renewal within the ctenophore body and suggest that Piwi, Vasa, Bruno, and PL10 belong to a gene network ancestrally acting in two distinct contexts: (i) the germline and (ii) stem cells, whatever the nature of their progeny.
Nature | 2006
Muriel Jager; Jérôme Murienne; Céline Clabaut; Jean Deutsch; Hervé Le Guyader; Michaël Manuel
Arthropod head segments offer a paradigm for understanding the diversification of form during evolution, as a variety of morphologically diverse appendages have arisen from them. There has been long-running controversy, however, concerning which head appendages are homologous among arthropods, and from which ancestral arrangement they have been derived. This controversy has recently been rekindled by the proposition that the probable ancestral arrangement, with appendages on the first head segment, has not been lost in all extant arthropods as previously thought, but has been retained in the pycnogonids, or sea spiders. This proposal was based on the neuroanatomical analysis of larvae from the sea spider Anoplodactylus sp., and suggested that the most anterior pair of appendages, the chelifores, are innervated from the first part of the brain, the protocerebrum. Our examination of Hox gene expression in another sea spider, Endeis spinosa, refutes this hypothesis. The anterior boundaries of Hox gene expression domains place the chelifore appendages as clearly belonging to the second head segment, innervated from the second part of the brain, the deutocerebrum. The deutocerebrum must have been secondarily displaced towards the protocerebrum in pycnogonid ancestors. As anterior-most appendages are also deutocerebral in the other two arthropod groups, the Euchelicerata and the Mandibulata, we conclude that the protocerebral appendages have been lost in all extant arthropods.
Journal of Experimental Zoology | 2011
Muriel Jager; Roxane Chiori; Alexandre Alié; Cyrielle Dayraud; Eric Quéinnec; Michaël Manuel
Ctenophores are non-bilaterian animals sharing with cnidarians and bilaterians the presence of sensory receptors, nerve cells, and synapses, absent in placozoans and sponges. Although recent immunofluorescence studies have renewed our knowledge of cnidarian neuro-anatomy, ctenophores have been much less investigated despite their importance to understanding the origin and early evolution of the nervous system. In this study, the neuro-anatomy of the ctenophore Pleurobrachia pileus (Müller, 1776) was explored by whole-mount fluorescent antibody staining using antibodies against tyrosylated -tubulin, FMRFamide, and vasopressin. We describe the morphology of nerve nets and their local specializations, and the organization of the aboral neuro-sensory complex comprising the apical organ and polar fields. Two distinct nerve nets are distinguished: a mesogleal nerve net, loosely organized throughout body mesoglea, and a much more compact “nerve net” with polygonal meshes in the ectodermal epithelium. The latter is organized as a plexus of short nerve cords. This epithelial nervous system contains distinct sub-populations of dispersed FMRFamide and vasopressin immunoreactive nerve cells. In the aboral neuro-sensory complex, our most significant observations include specialized nerve nets underlying the apical organ and polar fields, a tangential bundle of actin-rich fibers (interpreted as a muscle) within the polar fields, and distinct groups of neurons labeled by anti-FMRFamide and anti-vasopressin antibodies, within the apical organ floor. These results are discussed in a comparative perspective.
Development Genes and Evolution | 2006
Michaël Manuel; Muriel Jager; Jérôme Murienne; Céline Clabaut; Hervé Le Guyader
The pycnogonids (or sea spiders) are an enigmatic group of arthropods, classified in recent phylogenies as a sister-group of either euchelicerates (horseshoe crabs and arachnids), or all other extant arthropods. Because of their bizarre morpho-anatomy, homologies with other arthropod taxa have been difficult to assess. We review the main morphology-based hypotheses of correspondence between anterior segments of pycnogonids, arachnids and mandibulates. In an attempt to provide new relevant data to these controversial issues, we performed a PCR survey of Hox genes in two pycnogonid species, Endeis spinosa and Nymphon gracile, from which we could recover nine and six Hox genes, respectively. Phylogenetic analyses allowed to identify their orthology relationships. The Deformed gene from E. spinosa and the abdominal-A gene from N. gracile exhibit unusual sequence divergence in their homeodomains, which, in the latter case, may be correlated with the extreme reduction of the posterior region in pycnogonids. Expression patterns of two Hox genes (labial and Deformed) in the E. spinosa protonymphon larva are discussed. The anterior boundaries of their expression domains favour homology between sea spider chelifores, euchelicerates chelicerae and mandibulate (first) antennae, in contradistinction with previously proposed alternative schemes such as the protocerebral identity of sea spider chelifores or the absence of a deutocerebrum in chelicerates. In addition, while anatomical and embryological evidences suggest the possibility that the ovigers of sea spiders could be a duplicated pair of pedipalps, the Hox data support them as modified anterior walking legs, consistent with the classical views.
Journal of Biological Chemistry | 2013
Christophe Lechauve; Muriel Jager; Laurent Laguerre; Laurent Kiger; Gaëlle Correc; Cédric Leroux; Serge N. Vinogradov; Mirjam Czjzek; Michael C. Marden; Xavier Bailly
Background: Neuroglobins are expressed in vertebrate neurons. Results: Neuroglobins are located in neural systems of two basal animals (acoels and jellyfish) and are ubiquitous in metazoan transcriptomes. Conclusion: Neuroglobin was recruited in neural cell prototypes and later co-opted in hemoglobin-based blood systems. Significance: The universality of neuroglobins sheds new light on the origin and evolution of globins. Neuroglobins, previously thought to be restricted to vertebrate neurons, were detected in the brain of a photosymbiotic acoel, Symsagittifera roscoffensis, and in neurosensory cells of the jellyfish Clytia hemisphaerica. For the neuroglobin of S. roscoffensis, a member of a lineage that originated either at the base of the bilateria or of the deuterostome clade, we report the ligand binding properties, crystal structure at 2.3 Å, and brain immunocytochemical pattern. We also describe in situ hybridizations of two neuroglobins specifically expressed in differentiating nematocytes (neurosensory cells) and in statocytes (ciliated mechanosensory cells) of C. hemisphaerica, a member of the early branching animal phylum cnidaria. In silico searches using these neuroglobins as queries revealed the presence of previously unidentified neuroglobin-like sequences in most metazoan lineages. Because neural systems are almost ubiquitous in metazoa, the constitutive expression of neuroglobin-like proteins strongly supports the notion of an intimate association of neuroglobins with the evolution of animal neural systems and hints at the preservation of a vitally important function. Neuroglobins were probably recruited in the first protoneurons in early metazoans from globin precursors. Neuroglobins were identified in choanoflagellates, sponges, and placozoans and were conserved during nervous system evolution. Because the origin of neuroglobins predates the other metazoan globins, it is likely that neuroglobin gene duplication followed by co-option and subfunctionalization led to the emergence of globin families in protostomes and deuterostomes (i.e. convergent evolution).
Evodevo | 2016
Alicia Coste; Muriel Jager; Jean‑philippe Chambon; Michaël Manuel
BackgroundThe Hippo pathway regulates growth rate and organ size in fly and mouse, notably through control of cell proliferation. Molecular interactions at the heart of this pathway are known to have originated in the unicellular ancestry of metazoans. They notably involve a cascade of phosphorylations triggered by the kinase Hippo, with subsequent nuclear to cytoplasmic shift of Yorkie localisation, preventing its binding to the transcription factor Scalloped, thereby silencing proliferation genes. There are few comparative expression data of Hippo pathway genes in non-model animal species and notably none in non-bilaterian phyla.ResultsAll core Hippo pathway genes could be retrieved from the ctenophore Pleurobrachia pileus and the hydrozoan cnidarian Clytia hemisphaerica, with the important exception of Yorkie in ctenophore. Expression study of the Hippo, Salvador and Scalloped genes in tentacle “cellular conveyor belts” of these two organisms revealed striking differences. In P. pileus, their transcripts were detected in areas where undifferentiated progenitors intensely proliferate and where expression of cyclins B and D was also seen. In C. hemisphaerica, these three genes and Yorkie are expressed not only in the proliferating but also in the differentiation zone of the tentacle bulb and in mature tentacle cells. However, using an antibody designed against the C. hemiphaerica Yorkie protein, we show in two distinct cell lineages of the medusa that Yorkie localisation is predominantly nuclear in areas of active cell proliferation and mainly cytoplasmic elsewhere.ConclusionsThis is the first evidence of nucleocytoplasmic Yorkie shift in association with the arrest of cell proliferation in a cnidarian, strongly evoking the cell division-promoting role of this protein and its inhibition by the activated Hippo pathway in bilaterian models. Our results furthermore highlight important differences in terms of deployment and regulation of Hippo pathway genes between cnidarians and ctenophores.
Molecular Biology and Evolution | 2003
Muriel Jager; Alexandre Hassanin; Michaël Manuel; Hervé Le Guyader; Jean Deutsch
Developmental Biology | 2012
Lucas Leclère; Muriel Jager; Carine Barreau; Patrick Chang; Hervé Le Guyader; Michaël Manuel; Evelyn Houliston
BMC Evolutionary Biology | 2012
Cyrielle Dayraud; Alexandre Alié; Muriel Jager; Patrick Chang; Hervé Le Guyader; Michaël Manuel; Eric Quéinnec